Gaussian process models—I. A framework for probabilistic continuous inverse theory

We develop a theoretical framework for framing and solving probabilistic linear(ized) inverse problems in function spaces. This is built on the statistical theory of Gaussian Processes, and allows results to be obtained independent of any basis, avoiding any difficulties associated with the fidelity...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geophysical journal international Ročník 220; číslo 3; s. 1632 - 1647
Hlavní autoři: Valentine, Andrew P, Sambridge, Malcolm
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.03.2020
ISSN:0956-540X, 1365-246X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We develop a theoretical framework for framing and solving probabilistic linear(ized) inverse problems in function spaces. This is built on the statistical theory of Gaussian Processes, and allows results to be obtained independent of any basis, avoiding any difficulties associated with the fidelity of representation that can be achieved. We show that the results of Backus–Gilbert theory can be fully understood within our framework, although there is not an exact equivalence due to fundamental differences of philosophy between the two approaches. Nevertheless, our work can be seen to unify several strands of linear inverse theory, and connects it to a large body of work in machine learning. We illustrate the application of our theory using a simple example, involving determination of Earth’s radial density structure.
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggz520