An Extension to Basis-Hypervectors for Learning from Circular Data in Hyperdimensional Computing

Hyperdimensional Computing (HDC) is a computation framework based on random vector spaces, particularly useful for machine learning in resource-constrained environments. The encoding of information to the hyperspace is the most important stage in HDC. At its heart are basis-hypervectors, responsible...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autoři: Nunes, Igor, Heddes, Mike, Givargis, Tony, Nicolau, Alexandru
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 09.07.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hyperdimensional Computing (HDC) is a computation framework based on random vector spaces, particularly useful for machine learning in resource-constrained environments. The encoding of information to the hyperspace is the most important stage in HDC. At its heart are basis-hypervectors, responsible for representing atomic information. We present a detailed study on basis-hypervectors, leading to broad contributions to HDC: 1) an improvement for level-hypervectors, used to encode real numbers; 2) a method to learn from circular data, an important type of information never before addressed in HDC. Results indicate that these contributions lead to considerably more accurate models for classification and regression.
AbstractList Hyperdimensional Computing (HDC) is a computation framework based on random vector spaces, particularly useful for machine learning in resource-constrained environments. The encoding of information to the hyperspace is the most important stage in HDC. At its heart are basis-hypervectors, responsible for representing atomic information. We present a detailed study on basis-hypervectors, leading to broad contributions to HDC: 1) an improvement for level-hypervectors, used to encode real numbers; 2) a method to learn from circular data, an important type of information never before addressed in HDC. Results indicate that these contributions lead to considerably more accurate models for classification and regression.
Author Heddes, Mike
Givargis, Tony
Nicolau, Alexandru
Nunes, Igor
Author_xml – sequence: 1
  givenname: Igor
  surname: Nunes
  fullname: Nunes, Igor
  email: igord@uci.edu
  organization: UC Irvine,Department of Computer Science,Irvine,USA
– sequence: 2
  givenname: Mike
  surname: Heddes
  fullname: Heddes, Mike
  email: mheddes@uci.edu
  organization: UC Irvine,Department of Computer Science,Irvine,USA
– sequence: 3
  givenname: Tony
  surname: Givargis
  fullname: Givargis, Tony
  email: givargis@uci.edu
  organization: UC Irvine,Department of Computer Science,Irvine,USA
– sequence: 4
  givenname: Alexandru
  surname: Nicolau
  fullname: Nicolau, Alexandru
  email: nicolau@uci.edu
  organization: UC Irvine,Department of Computer Science,Irvine,USA
BookMark eNo1kM9KAzEYxCMoqHXfQCQvsPXLn002x7ptrVDwouf67SYrgW5Skq3Yt3exygzMZeZ3mFtyGWJwhDwwmDMG5nG5aCpluJlz4GLOgEuthboghdGmFhUILmTNrkmRs29BQVVLUPKGfCwCXX2PLmQfAx0jfcLsc7k5HVz6ct0YU6Z9THTrMAUfPmmf4kAbn7rjHhNd4ojUB_rbt344c3BPmzgcjuM0uCNXPe6zK_5yRt7Xq7dmU25fn1-axbZEbmAssTVCaOwUtNLyvuqQ2UmdAKNMKwGdcUwra-sOBJvsaqyk0kxYzVvbixm5P3O9c253SH7AdNr9HyF-AJlWV0Q
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC56929.2023.10247736
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323481
EndPage 6
ExternalDocumentID 10247736
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a290t-ab9337ac60b4d2f5ca1d1d1c30969b40ae9e176dd8c031031e8a546713d72bdf3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073487300068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:51:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a290t-ab9337ac60b4d2f5ca1d1d1c30969b40ae9e176dd8c031031e8a546713d72bdf3
PageCount 6
ParticipantIDs ieee_primary_10247736
PublicationCentury 2000
PublicationDate 2023-July-9
PublicationDateYYYYMMDD 2023-07-09
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-9
  day: 09
PublicationDecade 2020
PublicationTitle 2023 60th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584064
Score 2.2722247
Snippet Hyperdimensional Computing (HDC) is a computation framework based on random vector spaces, particularly useful for machine learning in resource-constrained...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms basis-hypervectors
circular data
Computational modeling
Data models
Design automation
Encoding
Heart
hyperdimensional computing
information theory
Machine learning
Title An Extension to Basis-Hypervectors for Learning from Circular Data in Hyperdimensional Computing
URI https://ieeexplore.ieee.org/document/10247736
WOSCitedRecordID wos001073487300068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCDe8sDqEsdObI-lD3VAVQdA3YpfQVkSlKQVPx_bSUEMDMiLZflsya-zffd9B8C955jLbW4QJVojKrRCyqYcUaxoYrnlWSB7fn1iyyVfr8WqB6sHLIy1Njif2ZHPBlu-qfTWf5W5HZ5Qxkg2AAPGsg6stV883rznlBPtUcA4Fg_T8STNnPof-RDho73wrzAqQYvMj__Z_wmIfvB4cPWtaU7BgS3PwNu4hLPP4IBelbCt4KNsigYt3MOy3oW_-Aa6GynsGVTfoUeSwElRB89TOJWthEUJQ33jOf47fg7YxXlwAhF4mc-eJwvUx0tAMhFxi6QShDCps1hRk-Splti4pIl7pghFY2mFxSwzhmtPCEqw5TJ1ByUmhiXK5OQcDMuqtBcAulYk4TxnwmCaWsyFYlpqJlKtcyX5JYj88Gw-OkqMzX5krv4ovwZHfhKCn6u4AcO23tpbcKh3bdHUd2EivwBcIqDB
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCc6TfSkxhm_5eCV2RZa4DjnlhnnssM0u02-anppTdst_vkC7TQePBguhPAI4es94P1-D4BbxzGXmlQjgpVChCuJpIkZIqEkkWGGJZ7s-XVCp1O2WPBZC1b3WBhjjHc-Mz2X9X_5ulAr91Rmd3hEKMXJNtiJCYmCBq61WT7ug8-qJ9LigMOA3z30B3FiDYCeCxLe24j_CqTi9cjo4J89OATdH0QenH3rmiOwZfJj8NbP4fDTu6AXOawLeC-qrEJje7Us1_41voLWJoUth-o7dFgSOMhK73sKH0QtYJZDX187lv-GoQM2kR6sQBe8jIbzwRi1EROQiHhQIyE5xlSoJJBER2msRKhtUtheVLgkgTDchDTRmilHCYpDw0Rsj8oQaxpJneIT0MmL3JwCaFsRmLGUch2S2ISMS6qEojxWKpWCnYGuG57lR0OKsdyMzPkf5Tdgbzx_niwnj9OnC7DvJsR7vfJL0KnLlbkCu2pdZ1V57Sf1C-ZfpAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=An+Extension+to+Basis-Hypervectors+for+Learning+from+Circular+Data+in+Hyperdimensional+Computing&rft.au=Nunes%2C+Igor&rft.au=Heddes%2C+Mike&rft.au=Givargis%2C+Tony&rft.au=Nicolau%2C+Alexandru&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC56929.2023.10247736&rft.externalDocID=10247736