Primer: Fast Private Transformer Inference on Encrypted Data
It is increasingly important to enable privacy-preserving inference for cloud services based on Transformers. Post-quantum cryptographic techniques, e.g., fully homomorphic encryption (FHE), and multi-party computation (MPC), are popular methods to support private Transformer inference. However, exi...
Saved in:
| Published in: | 2023 60th ACM/IEEE Design Automation Conference (DAC) pp. 1 - 6 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
09.07.2023
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | It is increasingly important to enable privacy-preserving inference for cloud services based on Transformers. Post-quantum cryptographic techniques, e.g., fully homomorphic encryption (FHE), and multi-party computation (MPC), are popular methods to support private Transformer inference. However, existing works still suffer from prohibitively computational and communicational overhead. In this work, we present, Primer, to enable a fast and accurate Transformer over encrypted data for natural language processing tasks. In particular, Primer is constructed by a hybrid cryptographic protocol optimized for attention-based Transformer models, as well as techniques including computation merge and tokens-first ciphertext packing. Comprehensive experiments on encrypted language modeling show that Primer achieves state-of-the-art accuracy and reduces the inference latency by 90.6% ∼ 97.5% over previous methods. |
|---|---|
| DOI: | 10.1109/DAC56929.2023.10247719 |