Primer: Fast Private Transformer Inference on Encrypted Data
It is increasingly important to enable privacy-preserving inference for cloud services based on Transformers. Post-quantum cryptographic techniques, e.g., fully homomorphic encryption (FHE), and multi-party computation (MPC), are popular methods to support private Transformer inference. However, exi...
Uloženo v:
| Vydáno v: | 2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
09.07.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is increasingly important to enable privacy-preserving inference for cloud services based on Transformers. Post-quantum cryptographic techniques, e.g., fully homomorphic encryption (FHE), and multi-party computation (MPC), are popular methods to support private Transformer inference. However, existing works still suffer from prohibitively computational and communicational overhead. In this work, we present, Primer, to enable a fast and accurate Transformer over encrypted data for natural language processing tasks. In particular, Primer is constructed by a hybrid cryptographic protocol optimized for attention-based Transformer models, as well as techniques including computation merge and tokens-first ciphertext packing. Comprehensive experiments on encrypted language modeling show that Primer achieves state-of-the-art accuracy and reduces the inference latency by 90.6% ∼ 97.5% over previous methods. |
|---|---|
| AbstractList | It is increasingly important to enable privacy-preserving inference for cloud services based on Transformers. Post-quantum cryptographic techniques, e.g., fully homomorphic encryption (FHE), and multi-party computation (MPC), are popular methods to support private Transformer inference. However, existing works still suffer from prohibitively computational and communicational overhead. In this work, we present, Primer, to enable a fast and accurate Transformer over encrypted data for natural language processing tasks. In particular, Primer is constructed by a hybrid cryptographic protocol optimized for attention-based Transformer models, as well as techniques including computation merge and tokens-first ciphertext packing. Comprehensive experiments on encrypted language modeling show that Primer achieves state-of-the-art accuracy and reduces the inference latency by 90.6% ∼ 97.5% over previous methods. |
| Author | Lou, Qian Zheng, Mengxin Jiang, Lei |
| Author_xml | – sequence: 1 givenname: Mengxin surname: Zheng fullname: Zheng, Mengxin email: zhengme@iu.edu organization: Indiana University Bloomington – sequence: 2 givenname: Qian surname: Lou fullname: Lou, Qian email: qian.lou@ucf.edu organization: University of Central Florida – sequence: 3 givenname: Lei surname: Jiang fullname: Jiang, Lei email: jiang60@iu.edu organization: Indiana University Bloomington |
| BookMark | eNo1j91KAzEUhCMoqHXfQCQv0PXkd0_Em7JttVDQi3pdkuwJLGi2ZBehb--CejUM8zHM3LLLPGRi7EFALQS4x_WqNdZJV0uQqhYgddMId8Eq1zhUBpRUGsU1q8axD2DBoAarb9jze-m_qDzxrR8nPptvPxE_FJ_HNJQ54bucqFCOxIfMNzmW82mijq_95O_YVfKfI1V_umAf282hfV3u31527Wq_9NLBtEQlIaSErkMXuxgMUmeNJK1RdolSE50goxwK47EJESXaMJNoIYACpxbs_re3J6LjaV7sy_n4f1L9ACGeSXE |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC56929.2023.10247719 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350323481 |
| EndPage | 6 |
| ExternalDocumentID | 10247719 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a290t-8320bff89d89cdcb58ed652e4482dfef7c91e539815a87bc8286b9cd860b03093 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073487300054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:47:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a290t-8320bff89d89cdcb58ed652e4482dfef7c91e539815a87bc8286b9cd860b03093 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10247719 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-July-9 |
| PublicationDateYYYYMMDD | 2023-07-09 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-9 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 60th ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584064 |
| Score | 2.3562229 |
| Snippet | It is increasingly important to enable privacy-preserving inference for cloud services based on Transformers. Post-quantum cryptographic techniques, e.g.,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Computational modeling Cryptographic Protocol Cryptography Design automation Fully Homomorphic Encryption Multi-party computation Natural language processing Private Inference Solids Transformer Transformers |
| Title | Primer: Fast Private Transformer Inference on Encrypted Data |
| URI | https://ieeexplore.ieee.org/document/10247719 |
| WOSCitedRecordID | wos001073487300054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECbaePCkxhrf4eCVugvLAsaLabvRS9NDTXpreAyJl22z3Zr47wXarfHgwRvhEcLAZAaGbz6EHgxjOmyrIzp4bqTgWhKdGUGCbllpODNl4RPZhJhM5HyupjuwesLCAED6fAaDWEyxfLe0m_hUFjScFkLEJJ-HQogtWKs7PDG8F4xTsUMB55l6HL0MeRnM_yBShA-6wb9oVJIVqU7-Of8p6v_g8fB0b2nO0AHU5-h5GjPzN0-40us2NEeaMsCzzhGFBr_tBy9rPK5t87UK_iUe6Vb30Xs1ng1fyY4LgWiqspYExcuM91I5qayzhktwJacQblfUefDCqhw4UzIP4hbGRnS4CT1lmZkU7bxAvXpZwyXCVDiQuRcyt7SQrDTU5MIbVxpgjDNxhfpx6YvVNt3Folv19R_1N-g4Cjj9YVW3qNc2G7hDR_az_Vg392mTvgH_k5Gv |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBT2pWPHtHrxu3c1jk4gXabu0WEsPFXorecyCl23ZbgX_vUnarXjw4C3kAckkw0wy-eZD6EEToty22lg5zy2mTIlYJZrHTreM0IzojBaBbIKPx2I2k5MtWD1gYQAgfD6Dji-GWL5dmLV_KnMajinnPsnnPqMUpxu4VnN8fIDPmSe6xQGniXzsvXRZ5hyAjicJ7zTDfxGpBDuSH_9zBieo_YPIiyY7W3OK9qA8Q88Tn5u_eopytapdsycqg2jauKJQRcPd4EUZ9UtTfS2dhxn1VK3a6D3vT7uDeMuGECsskzp2qpfoohDSCmms0UyAzRgGd7_CtoCCG5kCI1KkTuBcG48P166nyBId4p3nqFUuSrhAEeYWRFpwkRpMBck01ikvtM00EMIIv0Rtv_T5cpPwYt6s-uqP-nt0OJi-jeaj4fj1Gh15YYcfrfIGtepqDbfowHzWH6vqLmzYN8b-lPY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Primer%3A+Fast+Private+Transformer+Inference+on+Encrypted+Data&rft.au=Zheng%2C+Mengxin&rft.au=Lou%2C+Qian&rft.au=Jiang%2C+Lei&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC56929.2023.10247719&rft.externalDocID=10247719 |