VITAL: Vision Transformer Neural Networks for Accurate Smartphone Heterogeneity Resilient Indoor Localization

Wi-Fi fingerprinting-based indoor localization is an emerging embedded application domain that leverages existing Wi-Fi access points (APs) in buildings to localize users with smartphones. Unfortunately, the heterogeneity of wireless transceivers across diverse smartphones carried by users has been...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autoři: Gufran, Danish, Tiku, Saideep, Pasricha, Sudeep
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 09.07.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Wi-Fi fingerprinting-based indoor localization is an emerging embedded application domain that leverages existing Wi-Fi access points (APs) in buildings to localize users with smartphones. Unfortunately, the heterogeneity of wireless transceivers across diverse smartphones carried by users has been shown to reduce the accuracy and reliability of localization algorithms. In this paper, we propose a novel framework based on vision transformer neural networks called VITAL that addresses this important challenge. Experiments indicate that VITAL can reduce the uncertainty created by smartphone heterogeneity while improving localization accuracy from 41% to 68% over the best-known prior works. We also demonstrate the generalizability of our approach and propose a data augmentation technique that can be integrated into most deep learning-based localization frameworks to improve accuracy.
AbstractList Wi-Fi fingerprinting-based indoor localization is an emerging embedded application domain that leverages existing Wi-Fi access points (APs) in buildings to localize users with smartphones. Unfortunately, the heterogeneity of wireless transceivers across diverse smartphones carried by users has been shown to reduce the accuracy and reliability of localization algorithms. In this paper, we propose a novel framework based on vision transformer neural networks called VITAL that addresses this important challenge. Experiments indicate that VITAL can reduce the uncertainty created by smartphone heterogeneity while improving localization accuracy from 41% to 68% over the best-known prior works. We also demonstrate the generalizability of our approach and propose a data augmentation technique that can be integrated into most deep learning-based localization frameworks to improve accuracy.
Author Tiku, Saideep
Gufran, Danish
Pasricha, Sudeep
Author_xml – sequence: 1
  givenname: Danish
  surname: Gufran
  fullname: Gufran, Danish
  email: danish.gufran@colostate.edu
  organization: Colorado State University,Department of Electrical and Computer Engineering,Fort Collins,CO,United States
– sequence: 2
  givenname: Saideep
  surname: Tiku
  fullname: Tiku, Saideep
  email: saideep@colostate.edu
  organization: Colorado State University,Department of Electrical and Computer Engineering,Fort Collins,CO,United States
– sequence: 3
  givenname: Sudeep
  surname: Pasricha
  fullname: Pasricha, Sudeep
  email: sudeep@colostate.edu
  organization: Colorado State University,Department of Electrical and Computer Engineering,Fort Collins,CO,United States
BookMark eNo1kNtKAzEYhCMoqLVvIJIXaP1z2E3i3VIPLSwKuva2pLv_anC7KUlE6tMbUK8GBuZjZs7J8ehHJOSKwZwxMNe31aIoDTdzDlzMGXCpSi2PyNQoo0UBggup2SmZxui2UEKhJZTyjOzWq6aqb-jaRedH2gQ7xt6HHQb6iJ_BDlnSlw8fkWabVm2bzYT0ZWdD2r_nEnSJCYN_wxFdOtBnjG5wOCa6GjufI7Vv7eC-bcr8C3LS2yHi9E8n5PX-rlksZ_XTw2pR1TPLDaSZwh6LVoqtYsilBS0AtegMazvJJeNC5z1c9QxBcS1UL8s8WHTcFlAWEsSEXP5yHSJu9sHltofN_yviB4p6WqE
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC56929.2023.10247684
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323481
EndPage 6
ExternalDocumentID 10247684
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a290t-7efe5c43b71e24a0830e83d91cd424123803227f1e072837f460243d2a5065403
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073487300025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:51:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a290t-7efe5c43b71e24a0830e83d91cd424123803227f1e072837f460243d2a5065403
PageCount 6
ParticipantIDs ieee_primary_10247684
PublicationCentury 2000
PublicationDate 2023-July-9
PublicationDateYYYYMMDD 2023-07-09
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-9
  day: 09
PublicationDecade 2020
PublicationTitle 2023 60th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584064
Score 2.2959347
Snippet Wi-Fi fingerprinting-based indoor localization is an emerging embedded application domain that leverages existing Wi-Fi access points (APs) in buildings to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Buildings
Device Heterogeneity
Fingerprinting
Indoor localization
Location awareness
Neural networks
Transceivers
Transformers
Uncertainty
Vision Transformer
Wireless communication
Title VITAL: Vision Transformer Neural Networks for Accurate Smartphone Heterogeneity Resilient Indoor Localization
URI https://ieeexplore.ieee.org/document/10247684
WOSCitedRecordID wos001073487300025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXjduo9ssvFWqqWFUorW0lvJJrNQ6Is-_P3OpLuKBw-eNgTChmSy32Tn-2YYewSVSKkKHVgVy0CI3OJ3ULsgt4hGCDBp5lX8474aDLLJRA9LsbrXwgCAJ59Bk5o-lu9Wdk-_yvCEx4ICRzVWU0odxFqV8VB4D8FJlCrgKNRPL612KhH-m1QivFkN_lVGxaNI5_Sf7z9jjR89Hh9-I805O4LlBVuMe6NW_5mPvTqcjyoPFDacMm6YOT48xXvLsZu3rN1TWgj-vkBrIUY68C5xYVZoQoC-OH-D7WxO8kjeW7oVDukTzpU6zQb76LyO2t2gLJ4QmFiHu0BBAakVSa4iiIVBTyuELHE6sk4gaiNSh3iWVRFBqCgDTiEkJSd0sUlJbxoml6y-xKlcMZ5EDozReHGKnBBpYWQic-XAFnj5U0V2zRq0VtP1IT_GtFqmmz_6b9kJ7Ygnveo7Vt9t9nDPju3nbrbdPPhd_QK8L6LG
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWLE-c_C6dR_ZzcZbqZYW11J0Lb2V3WQWCn1IH_5-Z9JdxYMHT1kCgZBM9ptkvm-GsTuQQRTJQjla-pEjRK7xP6iMk2tEIwSYMLYq_mEi-_14NFKDUqxutTAAYMln0KRPG8s3C72hpzI84b6gwNEu2wuF8L2tXKsyHwrwITyJUgfsuer-sdUOI3QAmlQkvFkN_1VIxeJI5-ifMzhm9R9FHh98Y80J24H5KZsNe2kreeBDqw_naeWDwpJTzo1sio0lea84dvOW1htKDMHfZmgvxEkH3iU2zAKNCNAb56-wmkxJIMl7c7PAIQkhXanUrLP3zlPa7jpl-QQn85W7diQUEGoR5NIDX2Toa7kQB0Z52gjEbcRqF0-zLDxwJeXAKURE6QmNn4WkOHWDM1ab41TOGQ88A1mm8OrkGSHCIouCKJcGdIHXP1nEDVantRp_bDNkjKtluvij_5YddNOXZJz0-s-X7JB2x1Jg1RWrrZcbuGb7-nM9WS1v7A5_AWGQpg0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=VITAL%3A+Vision+Transformer+Neural+Networks+for+Accurate+Smartphone+Heterogeneity+Resilient+Indoor+Localization&rft.au=Gufran%2C+Danish&rft.au=Tiku%2C+Saideep&rft.au=Pasricha%2C+Sudeep&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC56929.2023.10247684&rft.externalDocID=10247684