VITAL: Vision Transformer Neural Networks for Accurate Smartphone Heterogeneity Resilient Indoor Localization

Wi-Fi fingerprinting-based indoor localization is an emerging embedded application domain that leverages existing Wi-Fi access points (APs) in buildings to localize users with smartphones. Unfortunately, the heterogeneity of wireless transceivers across diverse smartphones carried by users has been...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autori: Gufran, Danish, Tiku, Saideep, Pasricha, Sudeep
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 09.07.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Wi-Fi fingerprinting-based indoor localization is an emerging embedded application domain that leverages existing Wi-Fi access points (APs) in buildings to localize users with smartphones. Unfortunately, the heterogeneity of wireless transceivers across diverse smartphones carried by users has been shown to reduce the accuracy and reliability of localization algorithms. In this paper, we propose a novel framework based on vision transformer neural networks called VITAL that addresses this important challenge. Experiments indicate that VITAL can reduce the uncertainty created by smartphone heterogeneity while improving localization accuracy from 41% to 68% over the best-known prior works. We also demonstrate the generalizability of our approach and propose a data augmentation technique that can be integrated into most deep learning-based localization frameworks to improve accuracy.
DOI:10.1109/DAC56929.2023.10247684