PertNAS: Architectural Perturbations for Memory-Efficient Neural Architecture Search
Differentiable Neural Architecture Search (NAS) relies on aggressive weight-sharing to reduce its search cost. This leads to GPU-memory bottlenecks that hamper the algorithm's scalability. To resolve these bottlenecks, we propose a perturbations-based evolutionary approach that significantly re...
Uložené v:
| Vydané v: | 2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
09.07.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!