Graph Representation Learning for Microarchitecture Design Space Exploration
Design optimization of modern microprocessors is a complex task due to the exponential growth of the design space. This work presents GRL-DSE, an automatic microarchitecture search framework based on graph embeddings. GRL-DSE uses graph representation learning to build a compact and continuous embed...
Uloženo v:
| Vydáno v: | 2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
09.07.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Design optimization of modern microprocessors is a complex task due to the exponential growth of the design space. This work presents GRL-DSE, an automatic microarchitecture search framework based on graph embeddings. GRL-DSE uses graph representation learning to build a compact and continuous embedding space. Multi-objective Bayesian optimization using an ensemble surrogate model conducts microarchitecture design space exploration in the graph embedding space to efficiently and holistically optimize performance-power-area (PPA) objectives. Experimental studies on RISC-V BOOM show that GRLDSE outperforms previous techniques by 74.59% on Pareto front quality and outperforms manual designs in terms of PPA. |
|---|---|
| DOI: | 10.1109/DAC56929.2023.10247687 |