Lightning Talk: Efficient Embedded Machine Learning Deployment on Edge and IoT Devices

There has been rapid growth in the use of machine learning (ML) software in emerging edge and IoT systems. ML software deployments enable analytics and pattern recognition for multi-modal data (e.g., audio, images/video, wireless signals, air quality) obtained from embedded sensors and transceivers....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 2
Hlavný autor: Pasricha, Sudeep
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 09.07.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract There has been rapid growth in the use of machine learning (ML) software in emerging edge and IoT systems. ML software deployments enable analytics and pattern recognition for multi-modal data (e.g., audio, images/video, wireless signals, air quality) obtained from embedded sensors and transceivers. However, resource constraints in edge and IoT platforms make it challenging to meet quality-of-service and real-time goals. The growing complexity of ML also exacerbates these issues. We discuss the challenges of ML software deployment in edge and IoT platforms, present strategies to ease deployment, and discuss case studies from the automotive, indoor navigation, and hardware/software co-design domains.
AbstractList There has been rapid growth in the use of machine learning (ML) software in emerging edge and IoT systems. ML software deployments enable analytics and pattern recognition for multi-modal data (e.g., audio, images/video, wireless signals, air quality) obtained from embedded sensors and transceivers. However, resource constraints in edge and IoT platforms make it challenging to meet quality-of-service and real-time goals. The growing complexity of ML also exacerbates these issues. We discuss the challenges of ML software deployment in edge and IoT platforms, present strategies to ease deployment, and discuss case studies from the automotive, indoor navigation, and hardware/software co-design domains.
Author Pasricha, Sudeep
Author_xml – sequence: 1
  givenname: Sudeep
  surname: Pasricha
  fullname: Pasricha, Sudeep
  email: sudeep@colostate.edu
  organization: Colorado State University,Department of Electrical and Computer Engineering,Fort Collins,CO,United States
BookMark eNo1j8tKAzEYRiMoqLVvIJIX6PjnMpPEXZlOtTDiprotufxpgzOZ0ilC39776iy-wwfnmpznISMhdwwKxsDcL-Z1WRluCg5cFAy4VFqWZ2RqlNGiBMGF1OySTMcxOaig1BIqeUXe2rTdHXPKW7q23fsDbWJMPmE-0qZ3GAIG-mz9LmWkLdrDj7nAfTec-m9pyLQJW6Q2B7oa1l_TR_I43pCLaLsRp3-ckNdls66fZu3L46qetzPLDRxnUinHPVSOGQAWQkQHoCwLimspXSljCMEzULHyWttSgnXCOB-jrrxyTkzI7e9vQsTN_pB6ezht_vPFJ-GOUrI
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC56929.2023.10247845
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323481
EndPage 2
ExternalDocumentID 10247845
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a290t-477b2c06b19001ddfeb007a1d72844b54fdddc107f6c88a540ab39bcff86c7bb3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073487300159&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:51:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a290t-477b2c06b19001ddfeb007a1d72844b54fdddc107f6c88a540ab39bcff86c7bb3
PageCount 2
ParticipantIDs ieee_primary_10247845
PublicationCentury 2000
PublicationDate 2023-July-9
PublicationDateYYYYMMDD 2023-07-09
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-9
  day: 09
PublicationDecade 2020
PublicationTitle 2023 60th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584064
Score 2.2596447
Snippet There has been rapid growth in the use of machine learning (ML) software in emerging edge and IoT systems. ML software deployments enable analytics and pattern...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms edge computing
embedded software
Image edge detection
Indoor navigation
IoT computing
Machine learning
model optimizations
Software
Transceivers
Wireless communication
Wireless sensor networks
Title Lightning Talk: Efficient Embedded Machine Learning Deployment on Edge and IoT Devices
URI https://ieeexplore.ieee.org/document/10247845
WOSCitedRecordID wos001073487300159&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBHf8sCaEqeO7bChNhVIpepQULfK9p0rBCSotPx-bDcFMTCwWbEcS3eOX86-d4-QK2ApcoY2Edg1CRcaEhVyXZ3KtenaLAcd68wO5WikptNi3JDVIxcGEWPyGXZCM97lQ21X4ajMf-EZl4rn22RbSrkma20WT7je8-DEGxYwS4vr_m0vFx7-O0EivLMZ_EtGJaLIYO-f8--T9g8fj46_keaAbGF1SJ6GIa4Oxxp0ol9fbmgZq0H4N9DyzaDfUIA-xFRJpE0V1TntYxD4DdPQuqIlzJHqCuh9PfFdcdNok8dBOendJY1KQqKzIl0mXEqT2VQYD-0pA3BBDUhqBtIjDzc5dwBgfZTnhFVK-z8074TCWOeUsNKY7hFpVXWFx4Qa4bQ23GXeSVwZUTjwsTMrMLXMcSZPSDsYZfa-LoQx29jj9I_nZ2Q3mD5mtxbnpLVcrPCC7NjP5fPH4jK67wtSCJvc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCY6TfSkxhl_y8FrZ-koUG9mm9lit-xQzW4LPx6LUVszN_9-gXUaDx68EQi04bV8PHjf-xC6NiQGSkBHDNoqokyaSPhYVytSqdo6SY0MeWZzPhqJySQb12T1wIUBgBB8Bi1fDHf5ptJLf1Tm_vCEckHTTbSVUpqQFV1r_fn4Cz4HT7TmAZM4u-nedVLmNgAtLxLeWnf_JaQScOR-759vsI-aP4w8PP7GmgO0AeUhesq9Z-0PNnAhX19ucS_kg3Aj4N6bArekGDwMwZKA6zyqM9wFL_HrH4OrEvfMDLAsDR5UhWsKy0YTPd73ik4_qnUSIplk8SKinKtEx0w5cI-JMdbrAXFJDHfYQ1VKrTFGOz_PMi2EdHs0Z4ZMaWsF01yp9hFqlFUJxwgrZqVU1CbOTFQollnjvGeSQayJpYSfoKaflOn7KhXGdD0fp3_UX6GdfjHMp_lg9HCGdr0ZQqxrdo4ai_kSLtC2_lw8f8wvgym_AJ4jnyM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Lightning+Talk%3A+Efficient+Embedded+Machine+Learning+Deployment+on+Edge+and+IoT+Devices&rft.au=Pasricha%2C+Sudeep&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1109%2FDAC56929.2023.10247845&rft.externalDocID=10247845