Faster and Stronger Lossless Compression with Optimized Autoregressive Framework

Neural AutoRegressive (AR) framework has been applied in general-purpose lossless compression recently to improve compression performance. However, this paper found that directly applying the original AR framework causes the duplicated processing problem and the in-batch distribution variation probl...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autori: Mao, Yu, Li, Jingzong, Cui, Yufei, Xue, Jason Chun
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 09.07.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Neural AutoRegressive (AR) framework has been applied in general-purpose lossless compression recently to improve compression performance. However, this paper found that directly applying the original AR framework causes the duplicated processing problem and the in-batch distribution variation problem, which leads to deteriorated compression performance. The key to address the duplicated processing problem is to disentangle the processing of the history symbol set at the input side. Two new types of neural blocks are first proposed. An individual-block performs separate feature extraction on each history symbol while a mix-block models the correlation between extracted features and estimates the probability. A progressive AR-based compression framework (PAC) is then proposed, which only requires one history symbol from the host at a time rather than the whole history symbol set. In addition, we introduced a trainable matrix multiplication to model the ordered importance, replacing previous hardware-unfriendly Gumble-Softmax sampling. The in-batch distribution variation problem is caused by AR-based compression's structured batch construction. Based on this observation, a batch-location-aware individual block is proposed to capture the heterogeneous in-batch distributions precisely, improving the performance without efficiency losses. Experimental results show the proposed framework can achieve an average of 130% speed improvement with an average of 3% compression ratio gain across data domains compared to the state-of-the-art.
AbstractList Neural AutoRegressive (AR) framework has been applied in general-purpose lossless compression recently to improve compression performance. However, this paper found that directly applying the original AR framework causes the duplicated processing problem and the in-batch distribution variation problem, which leads to deteriorated compression performance. The key to address the duplicated processing problem is to disentangle the processing of the history symbol set at the input side. Two new types of neural blocks are first proposed. An individual-block performs separate feature extraction on each history symbol while a mix-block models the correlation between extracted features and estimates the probability. A progressive AR-based compression framework (PAC) is then proposed, which only requires one history symbol from the host at a time rather than the whole history symbol set. In addition, we introduced a trainable matrix multiplication to model the ordered importance, replacing previous hardware-unfriendly Gumble-Softmax sampling. The in-batch distribution variation problem is caused by AR-based compression's structured batch construction. Based on this observation, a batch-location-aware individual block is proposed to capture the heterogeneous in-batch distributions precisely, improving the performance without efficiency losses. Experimental results show the proposed framework can achieve an average of 130% speed improvement with an average of 3% compression ratio gain across data domains compared to the state-of-the-art.
Author Li, Jingzong
Xue, Jason Chun
Mao, Yu
Cui, Yufei
Author_xml – sequence: 1
  givenname: Yu
  surname: Mao
  fullname: Mao, Yu
  email: yumao7-c@my.cityu.edu.hk
  organization: City University of Hong Kong,Department of Computer Science
– sequence: 2
  givenname: Jingzong
  surname: Li
  fullname: Li, Jingzong
  email: jingzong.li@my.cityu.edu.hk
  organization: City University of Hong Kong,Department of Computer Science
– sequence: 3
  givenname: Yufei
  surname: Cui
  fullname: Cui, Yufei
  email: yufei.cui@mail.mcgill.ca
  organization: McGill University,School of Computer Science
– sequence: 4
  givenname: Jason Chun
  surname: Xue
  fullname: Xue, Jason Chun
  email: jasonxue@cityu.edu.hk
  organization: City University of Hong Kong,Department of Computer Science
BookMark eNo1j9tKxDAYhCMoqGvfQCQvsDVJm9NlqVaFwgrq9ZI2f9fgtilJdNGnt3i4mZmPgYE5R8eTnwChK0pySom-vqlqLjTTOSOsyClhpVRCHKFMS60KTgpWlIqeoixG1xFBuCqJKM_QY2NigoDNZPFTCn7aLdD6GPcQI679OIclOD_hg0uveDMnN7ovsLh6Tz7A7qf9ANwEM8LBh7cLdDKYfYTsz1fopbl9ru_X7ebuoa7atWGapHXJdW8UB8EtlQPr9SJSEtorwxTVQ9-LwequM4xQRa3kJR_kYI3ltNPQy2KFLn93HQBs5-BGEz63_8eLbxKqUow
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC56929.2023.10247866
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323481
EndPage 6
ExternalDocumentID 10247866
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a290t-459ca85e65d17f2c97f27701c8a2819fcc6fd9bba20181d7545f7fdad51b9ec73
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073487300178&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:50:59 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a290t-459ca85e65d17f2c97f27701c8a2819fcc6fd9bba20181d7545f7fdad51b9ec73
PageCount 6
ParticipantIDs ieee_primary_10247866
PublicationCentury 2000
PublicationDate 2023-July-9
PublicationDateYYYYMMDD 2023-07-09
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-9
  day: 09
PublicationDecade 2020
PublicationTitle 2023 60th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584064
Score 2.3278801
Snippet Neural AutoRegressive (AR) framework has been applied in general-purpose lossless compression recently to improve compression performance. However, this paper...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms auto-regressive
computational efficient
Correlation
Design automation
Feature extraction
general-purpose
hardware friendly
History
lossless data compression
neural networks
Picture archiving and communication systems
Symbols
Title Faster and Stronger Lossless Compression with Optimized Autoregressive Framework
URI https://ieeexplore.ieee.org/document/10247866
WOSCitedRecordID wos001073487300178&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5s8eBJxYpv9uA1NY_NPo6lGjxILajQW9nM7kpBU6mtB3-9M9tG8eDBS0gCSWCSnS_z-L5h7NIrmwpnIdF5ZjFACSExIrVJLbR0IJ1MC4jDJtRopCcTM96Q1SMXxnsfm898n3ZjLd_NYUWpMlzhuVBayg7rKKXWZK3246HyHoKT2LCAs9RcXQ-GpUT479OI8H578a8xKhFFqt1_Pn-P9X74eHz8jTT7bMs3B2xcWRI54LZx_IES2s94cIeY94LOi9M6X7e4NpxyrfwefcPr7NM7PiDZAh_jbHR1vGrbs3rsqbp5HN4mm_kIic1NukxEacDq0svSZSrkYHCjVJqBtlQeCwAyOFPXNidVLqfwZymo4Kwrs9p4UMUh6zbzxh8xXoBFOMPwT2ckRxPwrk65vCgAclHa-pj1yBzTt7UExrS1xMkf50_ZDhk99rWaM9ZdLlb-nG3Dx3L2vriIL-4L1EybFg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB20CrpSseLbWbhNTSbzXJZqqFhrwQrdlck8pKCp1NaFX-_caaO4cOEmJIGEMJO5Z-7jnIvQpRM6pVabRJJMBwfF-0TRVCclldwabnmam9hsQvT7cjRSgxVZPXJhnHOx-My14DTm8u3ULCBUFlY4oUJyvo42GKUkW9K16t8HEnwBnuiKB5yl6uq63WE8bABa0CS8VT_-q5FKxJFi559fsIuaP4w8PPjGmj205qp9NCg0yBxgXVn8CCHt53DRC6j3EswXhpW-LHKtMERb8UOwDq-TT2dxG4QLXPS0g7HDRV2g1URPxc2w001WHRISTVQ6TyhTRkvmOLOZ8MSocBAizYzUkCDzxnBvVVlqArpcVoTtkhfeasuyUjkj8gPUqKaVO0Q4NzoAWnAAZQaCND681QpL8twYQpkuj1AThmP8thTBGNcjcfzH_Qu01R3e98a92_7dCdqGCYhVruoUNeazhTtDm-ZjPnmfncdJ_AIU5J5d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Faster+and+Stronger+Lossless+Compression+with+Optimized+Autoregressive+Framework&rft.au=Mao%2C+Yu&rft.au=Li%2C+Jingzong&rft.au=Cui%2C+Yufei&rft.au=Xue%2C+Jason+Chun&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC56929.2023.10247866&rft.externalDocID=10247866