ACGraph: Accelerating Streaming Graph Processing via Dependence Hierarchy

Streaming graph processing needs to timely evaluate continuous queries. Prior systems suffer from massive redundant computations due to the irregular order of processing vertices influenced by updates. To address this issue, we propose ACGraph, a novel streaming graph processing approach for monoton...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 60th ACM/IEEE Design Automation Conference (DAC) S. 1 - 6
Hauptverfasser: Jiang, Zihan, Mao, Fubing, Guo, Yapu, Liu, Xu, Liu, Haikun, Liao, Xiaofei, Jin, Hai, Zhang, Wei
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 09.07.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Streaming graph processing needs to timely evaluate continuous queries. Prior systems suffer from massive redundant computations due to the irregular order of processing vertices influenced by updates. To address this issue, we propose ACGraph, a novel streaming graph processing approach for monotonic graph algorithms. It maintains dependence trees during runtime, and makes affected vertices processed in a top-to-bottom order in the hierarchy of the dependence trees, thus normalizing the state propagation order and coalescing of multiple propagation to the same vertices. Experimental results show that ACGraph reduces the number of updates by 50% on average, and achieves the speedup of 1.75~7.43× over state-of-the-art systems.
AbstractList Streaming graph processing needs to timely evaluate continuous queries. Prior systems suffer from massive redundant computations due to the irregular order of processing vertices influenced by updates. To address this issue, we propose ACGraph, a novel streaming graph processing approach for monotonic graph algorithms. It maintains dependence trees during runtime, and makes affected vertices processed in a top-to-bottom order in the hierarchy of the dependence trees, thus normalizing the state propagation order and coalescing of multiple propagation to the same vertices. Experimental results show that ACGraph reduces the number of updates by 50% on average, and achieves the speedup of 1.75~7.43× over state-of-the-art systems.
Author Liu, Xu
Zhang, Wei
Mao, Fubing
Guo, Yapu
Jiang, Zihan
Liu, Haikun
Liao, Xiaofei
Jin, Hai
Author_xml – sequence: 1
  givenname: Zihan
  surname: Jiang
  fullname: Jiang, Zihan
  email: jiangzihan@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology,Wuhan,China,430074
– sequence: 2
  givenname: Fubing
  surname: Mao
  fullname: Mao, Fubing
  email: fbmao@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology,Wuhan,China,430074
– sequence: 3
  givenname: Yapu
  surname: Guo
  fullname: Guo, Yapu
  email: guoyapu@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology,Wuhan,China,430074
– sequence: 4
  givenname: Xu
  surname: Liu
  fullname: Liu, Xu
  email: liuxu2021@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology,Wuhan,China,430074
– sequence: 5
  givenname: Haikun
  surname: Liu
  fullname: Liu, Haikun
  email: hkliu@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology,Wuhan,China,430074
– sequence: 6
  givenname: Xiaofei
  surname: Liao
  fullname: Liao, Xiaofei
  email: xfliao@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology,Wuhan,China,430074
– sequence: 7
  givenname: Hai
  surname: Jin
  fullname: Jin, Hai
  email: hjin@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology,Wuhan,China,430074
– sequence: 8
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  email: wei.zhang@ust.hk
  organization: HKUST,Department of Electronic and Computer Engineering,Hong Kong
BookMark eNo1T9tKw0AUXEFBrfkDkfxA6tk9u8mubyHVtlBQUJ_LXk7sQpuGTRD698bbvMwwwwzMNTvvjh0xdsdhzjmY-0XdqNIIMxcgcM5ByMqAPGOZqYxGBShQan7JsmGIDkpQWkIpr9i6bpbJ9ruHvPae9pTsGLuP_HVMZA_f6ifNX9LR01SdjM9o8wX11AXqPOWrOHWS351u2EVr9wNlfzxj70-Pb82q2Dwv1029KawwMBaolJ0gBGjtsa1sQIkqADobSpKlczpgidxNt1CT456CMJZajiFIw3HGbn93IxFt-xQPNp22_4_xC49sTnM
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC56929.2023.10247904
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323481
EndPage 6
ExternalDocumentID 10247904
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Research and Development
  funderid: 10.13039/100006190
– fundername: Huawei Technologies
  funderid: 10.13039/501100003816
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a290t-355aaaa22088c3f7ad3435d03bad6e46bb8d3631b11038eb1ced29aef13dd4913
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073487300212&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:08:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a290t-355aaaa22088c3f7ad3435d03bad6e46bb8d3631b11038eb1ced29aef13dd4913
PageCount 6
ParticipantIDs ieee_primary_10247904
PublicationCentury 2000
PublicationDate 2023-July-9
PublicationDateYYYYMMDD 2023-07-09
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-9
  day: 09
PublicationDecade 2020
PublicationTitle 2023 60th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584064
Score 2.2319536
Snippet Streaming graph processing needs to timely evaluate continuous queries. Prior systems suffer from massive redundant computations due to the irregular order of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Design automation
graph processing
incremental computation
Runtime
state propagation
streaming graph
Title ACGraph: Accelerating Streaming Graph Processing via Dependence Hierarchy
URI https://ieeexplore.ieee.org/document/10247904
WOSCitedRecordID wos001073487300212&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmACRBBvZWB1iR-xY7aopZSl6gBSt8pP6ECKSluJf4_PTUEMDHiynNhRzrG_U87ffQjdkEq40qoCexoE5lRbbKqSY-uo0cFEj74ISWxCjkbVZKLGLVk9cWG89-nwme9CNcXy3dyu4FdZXOGUSwXZP3ellBuy1vbjgfBeBCfesoBJoW77da8UEf67IBHe3Xb-JaOSUGRw8M_nH6Lsh4-Xj7-R5gjt-OYYPda9B8g2fZfX1kbwgKlsXnIIM-s3qKWrecsEgIb1TOf9VvQ2jjicAfnYvn5m6Hlw_9Qb4lYYAWuqiiWOPoKOhdK4RVgWpHYsej2uYEY74bkwpnJMMGIIpD-Pu7H1jirtA2HOcUXYCeo088afotx5Uvr4WtopxUsWdBVvFDwoq6wLXJ6hDOwwfd_kvphuTXD-R_sF2gdrpwOt6hJ1louVv0J7dr2cfSyu04x9AcL6l5I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MmuhJjRjf7sFrcfvY7tYbAREiEg6YcCN9KgcXg0Div7dTFo0HD_bUdLdNd7rtTDrzzYfQDSmEzYxMsaNeYE6VwbrIODaWauV1sOhTH8km8sGgGI_lsAKrRyyMcy4Gn7kGVKMv387MEq7Kwg6nPJeQ_XM745ySNVxr8_uAgy-oJ17hgEkqb9vNViaCAdAAkvDGpvsvIpWoRzr7_5zBAar_IPKS4beuOURbrjxCvWbrAfJN3yVNY4L6gMUsXxJwNKs3qMWnSYUFgIbVVCXtivY2jNidAvzYvH7W0XPnftTq4ooaASsq0wUOVoIKhdJwSBjmc2VZsHtsyrSywnGhdWGZYEQTSIAezmPjLJXKecKs5ZKwY1QrZ6U7QYl1JHPhs5SVkmfMqyK8KLiXRhrreX6K6iCHyfs6-8VkI4KzP9qv0W539NSf9HuDx3O0B5KP4a3yAtUW86W7RDtmtZh-zK_i6n0B1ria2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=ACGraph%3A+Accelerating+Streaming+Graph+Processing+via+Dependence+Hierarchy&rft.au=Jiang%2C+Zihan&rft.au=Mao%2C+Fubing&rft.au=Guo%2C+Yapu&rft.au=Liu%2C+Xu&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC56929.2023.10247904&rft.externalDocID=10247904