Flex-SFU: Accelerating DNN Activation Functions by Non-Uniform Piecewise Approximation

Modern DNN workloads increasingly rely on activation functions consisting of computationally complex operations. This poses a challenge to current accelerators optimized for convolutions and matrix-matrix multiplications. This work presents Flex-SFU, a lightweight hardware accelerator for activation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autoři: Reggiani, Enrico, Andri, Renzo, Cavigelli, Lukas
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 09.07.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.