Influence of the $ \beta $-fractional derivative on optical soliton solutions of the pure-quartic nonlinear Schrödinger equation with weak nonlocality
This study investigated the dynamics of a pure-quartic nonlinear Schrödinger equation incorporating a $ \beta $-fractional derivative and weak nonlocal effects prevalent in optical fiber systems. Using the improved modified extended tanh-function method, we obtained a diverse array of soliton soluti...
Gespeichert in:
| Veröffentlicht in: | AIMS mathematics Jg. 10; H. 3; S. 7489 - 7508 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
AIMS Press
01.03.2025
|
| Schlagworte: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study investigated the dynamics of a pure-quartic nonlinear Schrödinger equation incorporating a $ \beta $-fractional derivative and weak nonlocal effects prevalent in optical fiber systems. Using the improved modified extended tanh-function method, we obtained a diverse array of soliton solutions, including bright, dark, and singular solitons, as well as hyperbolic, trigonometric, and Jacobi elliptic solutions. The main goal was to clarify how fractional derivatives, defined by the parameter $ \beta $, affect the characteristics and behavior of these soliton solutions. The key outcomes indicate that variations in the parameter $ \beta $ lead to substantial changes in soliton amplitude, shape, and propagation patterns. Graphical illustrations clearly depict these transformations, highlighting how fractional derivatives have a major impact on the properties of solitons. Crucially, for certain fractional orders, the localization and stability of solitons are enhanced, which is essential for accurate modeling of nonlocal and dispersive effects in optical fibers. This work not only enhances fundamental understanding of nonlinear wave phenomena within optical communication systems but also offers valuable insights into using fractional calculus for designing and optimizing advanced photonic devices. |
|---|---|
| AbstractList | This study investigated the dynamics of a pure-quartic nonlinear Schrödinger equation incorporating a $ \beta $-fractional derivative and weak nonlocal effects prevalent in optical fiber systems. Using the improved modified extended tanh-function method, we obtained a diverse array of soliton solutions, including bright, dark, and singular solitons, as well as hyperbolic, trigonometric, and Jacobi elliptic solutions. The main goal was to clarify how fractional derivatives, defined by the parameter $ \beta $, affect the characteristics and behavior of these soliton solutions. The key outcomes indicate that variations in the parameter $ \beta $ lead to substantial changes in soliton amplitude, shape, and propagation patterns. Graphical illustrations clearly depict these transformations, highlighting how fractional derivatives have a major impact on the properties of solitons. Crucially, for certain fractional orders, the localization and stability of solitons are enhanced, which is essential for accurate modeling of nonlocal and dispersive effects in optical fibers. This work not only enhances fundamental understanding of nonlinear wave phenomena within optical communication systems but also offers valuable insights into using fractional calculus for designing and optimizing advanced photonic devices. |
| Author | Badra, Niveen Soliman, Mahmoud Ramadan, M. Elsaid Ahmed, Hamdy M. Alkhatib, Soliman Samir, Islam |
| Author_xml | – sequence: 1 givenname: Mahmoud surname: Soliman fullname: Soliman, Mahmoud – sequence: 2 givenname: Hamdy M. surname: Ahmed fullname: Ahmed, Hamdy M. – sequence: 3 givenname: Niveen surname: Badra fullname: Badra, Niveen – sequence: 4 givenname: M. Elsaid surname: Ramadan fullname: Ramadan, M. Elsaid – sequence: 5 givenname: Islam surname: Samir fullname: Samir, Islam – sequence: 6 givenname: Soliman surname: Alkhatib fullname: Alkhatib, Soliman |
| BookMark | eNptkUtOwzAQQC0EEr_uOIAXLAn4lzpeIsSnEhILYIcUTfyhhhAXxwX1JNyEC3AxnFIQQqzGHr95Gs9so_UudBahPUoOueLi6AnS9JARVnIh1tAWE5IXY1VV67_Om2jU9w-EEEaZYFJsobdJ59q57bTFweE0tXgf3zU2Ad4vXASdfOigxcZG_wLJv2Ssw2GWvM7ZPrQ-5XuO8wHsvx2zebTF8xxi5nDus_WdhYiv9TR-vBvf3duIbX4fivCrT1P8auFxSYYs9mmxizYctL0dreIOuj07vTm5KC6vzicnx5cFMEVEUWllKGukoKSqtAWgRnI-llxVSgOTlDeCirKRZWmcooo22jlGQcHYSTCW76DJl9cEeKhn0T9BXNQBfL1MhHhfL3_R2poZOjgJa8o8PMOVEUaq3EfJFPBKZtfBl0vH0PfRuh8fJfWwo3rYUb3aUcbZH1z7tBxJiuDb_4s-AWkgmuM |
| CitedBy_id | crossref_primary_10_3934_math_2025889 |
| Cites_doi | 10.1007/s40314-025-03127-9 10.1155/2021/6694980 10.1155/2014/107535 10.1016/j.rinp.2024.107648 10.1140/epjp/s13360-023-04530-z 10.3934/cam.2023020 10.3934/math.20241229 10.1007/s11071-024-09438-6 10.1016/j.optcom.2004.03.005 10.1007/s11082-024-06705-z 10.32604/cmes.2022.022985 10.1088/1572-9494/ad84d3 10.1007/s11082-023-04599-x 10.3390/sym16111469 10.1186/s13661-024-01825-7 10.1016/j.asej.2024.103037 10.3934/math.20241100 10.1002/mma.8859 10.1038/s41598-024-74044-w 10.1007/s11082-024-06593-3 10.1142/S0217984924504335 10.1371/journal.pone.0297898 10.1038/s41598-024-74606-y 10.1038/s41598-024-72610-w 10.1016/j.aej.2023.01.053 10.1515/phys-2024-0093 10.3390/math12233643 10.59277/RomRepPhys.2024.76.108 10.1016/j.chaos.2022.112289 10.1515/nleng-2024-0025 10.1016/j.physleta.2017.07.012 10.3934/cam.2024012 10.1016/j.cam.2023.115089 10.1142/S0217979223502247 10.1515/zna-2006-3-401 10.1007/s11082-024-07244-3 10.1088/1402-4896/ad9cfa 10.1016/j.physleta.2022.128608 10.1063/5.0196639 |
| ContentType | Journal Article |
| CorporateAuthor | Department of Mathematics, Faculty of Science, Islamic University of Madinah, Medina, Saudi Arabia Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El Shorouk Academy, Cairo, Egypt Department of Physics and Mathematics Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt College of Engineering and Technology, American University in the Emirates (AUE), Dubai intel Academic City, P. O. Box 503000, Dubai, UAE |
| CorporateAuthor_xml | – name: Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El Shorouk Academy, Cairo, Egypt – name: Department of Mathematics, Faculty of Science, Islamic University of Madinah, Medina, Saudi Arabia – name: College of Engineering and Technology, American University in the Emirates (AUE), Dubai intel Academic City, P. O. Box 503000, Dubai, UAE – name: Department of Physics and Mathematics Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2025344 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 7508 |
| ExternalDocumentID | oai_doaj_org_article_2d19ca202b5242d39d4d79a29529a387 10_3934_math_2025344 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a2904-8c9d12b741088ceaa1d733673989ca2713b4145b755df9191bcff21a9a6f7ade3 |
| IEDL.DBID | DOA |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:51:03 EDT 2025 Tue Nov 18 20:51:27 EST 2025 Sat Nov 29 08:07:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a2904-8c9d12b741088ceaa1d733673989ca2713b4145b755df9191bcff21a9a6f7ade3 |
| OpenAccessLink | https://doaj.org/article/2d19ca202b5242d39d4d79a29529a387 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2d19ca202b5242d39d4d79a29529a387 crossref_primary_10_3934_math_2025344 crossref_citationtrail_10_3934_math_2025344 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2025 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2025344-1 key-10.3934/math.2025344-40 key-10.3934/math.2025344-41 key-10.3934/math.2025344-7 key-10.3934/math.2025344-24 key-10.3934/math.2025344-6 key-10.3934/math.2025344-25 key-10.3934/math.2025344-9 key-10.3934/math.2025344-26 key-10.3934/math.2025344-8 key-10.3934/math.2025344-27 key-10.3934/math.2025344-3 key-10.3934/math.2025344-20 key-10.3934/math.2025344-2 key-10.3934/math.2025344-21 key-10.3934/math.2025344-5 key-10.3934/math.2025344-22 key-10.3934/math.2025344-4 key-10.3934/math.2025344-23 key-10.3934/math.2025344-17 key-10.3934/math.2025344-39 key-10.3934/math.2025344-18 key-10.3934/math.2025344-19 key-10.3934/math.2025344-30 key-10.3934/math.2025344-13 key-10.3934/math.2025344-35 key-10.3934/math.2025344-14 key-10.3934/math.2025344-36 key-10.3934/math.2025344-15 key-10.3934/math.2025344-37 key-10.3934/math.2025344-16 key-10.3934/math.2025344-38 key-10.3934/math.2025344-31 key-10.3934/math.2025344-10 key-10.3934/math.2025344-32 key-10.3934/math.2025344-11 key-10.3934/math.2025344-33 key-10.3934/math.2025344-12 key-10.3934/math.2025344-34 key-10.3934/math.2025344-28 key-10.3934/math.2025344-29 |
| References_xml | – ident: key-10.3934/math.2025344-21 doi: 10.1007/s40314-025-03127-9 – ident: key-10.3934/math.2025344-16 doi: 10.1155/2021/6694980 – ident: key-10.3934/math.2025344-38 doi: 10.1155/2014/107535 – ident: key-10.3934/math.2025344-20 – ident: key-10.3934/math.2025344-8 doi: 10.1016/j.rinp.2024.107648 – ident: key-10.3934/math.2025344-14 doi: 10.1140/epjp/s13360-023-04530-z – ident: key-10.3934/math.2025344-17 doi: 10.3934/cam.2023020 – ident: key-10.3934/math.2025344-2 doi: 10.3934/math.20241229 – ident: key-10.3934/math.2025344-1 doi: 10.1007/s11071-024-09438-6 – ident: key-10.3934/math.2025344-5 doi: 10.1016/j.optcom.2004.03.005 – ident: key-10.3934/math.2025344-9 doi: 10.1007/s11082-024-06705-z – ident: key-10.3934/math.2025344-24 doi: 10.32604/cmes.2022.022985 – ident: key-10.3934/math.2025344-37 doi: 10.1088/1572-9494/ad84d3 – ident: key-10.3934/math.2025344-41 doi: 10.1007/s11082-023-04599-x – ident: key-10.3934/math.2025344-34 doi: 10.3390/sym16111469 – ident: key-10.3934/math.2025344-10 doi: 10.1186/s13661-024-01825-7 – ident: key-10.3934/math.2025344-27 doi: 10.1016/j.asej.2024.103037 – ident: key-10.3934/math.2025344-4 doi: 10.3934/math.20241100 – ident: key-10.3934/math.2025344-23 doi: 10.1002/mma.8859 – ident: key-10.3934/math.2025344-29 doi: 10.1038/s41598-024-74044-w – ident: key-10.3934/math.2025344-3 doi: 10.1007/s11082-024-06593-3 – ident: key-10.3934/math.2025344-11 doi: 10.1142/S0217984924504335 – ident: key-10.3934/math.2025344-26 doi: 10.1371/journal.pone.0297898 – ident: key-10.3934/math.2025344-30 doi: 10.1038/s41598-024-74606-y – ident: key-10.3934/math.2025344-28 doi: 10.1038/s41598-024-72610-w – ident: key-10.3934/math.2025344-40 doi: 10.1016/j.aej.2023.01.053 – ident: key-10.3934/math.2025344-32 doi: 10.1515/phys-2024-0093 – ident: key-10.3934/math.2025344-36 doi: 10.3390/math12233643 – ident: key-10.3934/math.2025344-35 doi: 10.59277/RomRepPhys.2024.76.108 – ident: key-10.3934/math.2025344-6 doi: 10.1016/j.chaos.2022.112289 – ident: key-10.3934/math.2025344-12 doi: 10.1515/nleng-2024-0025 – ident: key-10.3934/math.2025344-15 doi: 10.1016/j.physleta.2017.07.012 – ident: key-10.3934/math.2025344-18 doi: 10.3934/cam.2024012 – ident: key-10.3934/math.2025344-22 doi: 10.1016/j.cam.2023.115089 – ident: key-10.3934/math.2025344-33 doi: 10.1142/S0217979223502247 – ident: key-10.3934/math.2025344-39 doi: 10.1515/zna-2006-3-401 – ident: key-10.3934/math.2025344-7 doi: 10.1007/s11082-024-07244-3 – ident: key-10.3934/math.2025344-13 doi: 10.1088/1402-4896/ad9cfa – ident: key-10.3934/math.2025344-25 doi: 10.1016/j.physleta.2022.128608 – ident: key-10.3934/math.2025344-31 doi: 10.1063/5.0196639 – ident: key-10.3934/math.2025344-19 |
| SSID | ssj0002124274 |
| Score | 2.3112764 |
| Snippet | This study investigated the dynamics of a pure-quartic nonlinear Schrödinger equation incorporating a $ \beta $-fractional derivative and weak nonlocal effects... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 7489 |
| SubjectTerms | fractional derivatives improved modified extended tanh-function method nonlinear schrödinger equation soliton solutions |
| Title | Influence of the $ \beta $-fractional derivative on optical soliton solutions of the pure-quartic nonlinear Schrödinger equation with weak nonlocality |
| URI | https://doaj.org/article/2d19ca202b5242d39d4d79a29529a387 |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yeNCD-MT1RQ7rScpumqRtjiq76MFFUGEPQsmrKMo-ug9v_g3_iX_AP-Yk6S7rQbx4KbQdpunMNDOTTr5BqJGwjCmZmCgG5UOCQlikeGoiCt9S0WIy1UT6ZhNpt5v1euJ2qdWXqwkL8MBBcM3YEKElpOiKgzcxVBhmUiFjwWMhaeb3kUPUs5RMuTkYJmQG-VaodKeCsibEf-7fQ8wpYz980BJUv_cpnU20UQWD-DwMYgut2P42Wr9ZIKmOd9DH9byLCB4UGG7gBn5UdiJxIyrKsCsBWBgwpJnH8MaDPh4M_Qo1HrviNjhf2Necx3Ba2mg09W-P-wEtQ5b4Tj-VX5_Gr_RhOwoo4Ngt1eI3K188pfN9ELnvoodO-_7yKqqaKUQgqxaLMi0MiRUEEDCvaCslMQ4JMaUic_KFXFUxwrhKOTeFgCxO6aKIiRQyKVJpLN1DNXiK3UfYqJaFTxdUCrmhhohDAzOuSWa5lomwdXQ2F2-uK6Rx1_DiNYeMwykjd8rIK2XU0emCehgQNn6hu3CaWtA4XGx_Aawlr6wl_8taDv6DySFac2MKlWhHqDYpp_YYrerZ5HlcnnhDhOPNe_sbMAXnIQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+the+%24+%5Cbeta+%24-fractional+derivative+on+optical+soliton+solutions+of+the+pure-quartic+nonlinear+Schr%C3%B6dinger+equation+with+weak+nonlocality&rft.jtitle=AIMS+mathematics&rft.au=Mahmoud+Soliman&rft.au=Hamdy+M.+Ahmed&rft.au=Niveen+Badra&rft.au=M.+Elsaid+Ramadan&rft.date=2025-03-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=10&rft.issue=3&rft.spage=7489&rft.epage=7508&rft_id=info:doi/10.3934%2Fmath.2025344&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2d19ca202b5242d39d4d79a29529a387 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |