Influence of the $ \beta $-fractional derivative on optical soliton solutions of the pure-quartic nonlinear Schrödinger equation with weak nonlocality

This study investigated the dynamics of a pure-quartic nonlinear Schrödinger equation incorporating a $ \beta $-fractional derivative and weak nonlocal effects prevalent in optical fiber systems. Using the improved modified extended tanh-function method, we obtained a diverse array of soliton soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics Jg. 10; H. 3; S. 7489 - 7508
Hauptverfasser: Soliman, Mahmoud, Ahmed, Hamdy M., Badra, Niveen, Ramadan, M. Elsaid, Samir, Islam, Alkhatib, Soliman
Format: Journal Article
Sprache:Englisch
Veröffentlicht: AIMS Press 01.03.2025
Schlagworte:
ISSN:2473-6988, 2473-6988
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study investigated the dynamics of a pure-quartic nonlinear Schrödinger equation incorporating a $ \beta $-fractional derivative and weak nonlocal effects prevalent in optical fiber systems. Using the improved modified extended tanh-function method, we obtained a diverse array of soliton solutions, including bright, dark, and singular solitons, as well as hyperbolic, trigonometric, and Jacobi elliptic solutions. The main goal was to clarify how fractional derivatives, defined by the parameter $ \beta $, affect the characteristics and behavior of these soliton solutions. The key outcomes indicate that variations in the parameter $ \beta $ lead to substantial changes in soliton amplitude, shape, and propagation patterns. Graphical illustrations clearly depict these transformations, highlighting how fractional derivatives have a major impact on the properties of solitons. Crucially, for certain fractional orders, the localization and stability of solitons are enhanced, which is essential for accurate modeling of nonlocal and dispersive effects in optical fibers. This work not only enhances fundamental understanding of nonlinear wave phenomena within optical communication systems but also offers valuable insights into using fractional calculus for designing and optimizing advanced photonic devices.
AbstractList This study investigated the dynamics of a pure-quartic nonlinear Schrödinger equation incorporating a $ \beta $-fractional derivative and weak nonlocal effects prevalent in optical fiber systems. Using the improved modified extended tanh-function method, we obtained a diverse array of soliton solutions, including bright, dark, and singular solitons, as well as hyperbolic, trigonometric, and Jacobi elliptic solutions. The main goal was to clarify how fractional derivatives, defined by the parameter $ \beta $, affect the characteristics and behavior of these soliton solutions. The key outcomes indicate that variations in the parameter $ \beta $ lead to substantial changes in soliton amplitude, shape, and propagation patterns. Graphical illustrations clearly depict these transformations, highlighting how fractional derivatives have a major impact on the properties of solitons. Crucially, for certain fractional orders, the localization and stability of solitons are enhanced, which is essential for accurate modeling of nonlocal and dispersive effects in optical fibers. This work not only enhances fundamental understanding of nonlinear wave phenomena within optical communication systems but also offers valuable insights into using fractional calculus for designing and optimizing advanced photonic devices.
Author Badra, Niveen
Soliman, Mahmoud
Ramadan, M. Elsaid
Ahmed, Hamdy M.
Alkhatib, Soliman
Samir, Islam
Author_xml – sequence: 1
  givenname: Mahmoud
  surname: Soliman
  fullname: Soliman, Mahmoud
– sequence: 2
  givenname: Hamdy M.
  surname: Ahmed
  fullname: Ahmed, Hamdy M.
– sequence: 3
  givenname: Niveen
  surname: Badra
  fullname: Badra, Niveen
– sequence: 4
  givenname: M. Elsaid
  surname: Ramadan
  fullname: Ramadan, M. Elsaid
– sequence: 5
  givenname: Islam
  surname: Samir
  fullname: Samir, Islam
– sequence: 6
  givenname: Soliman
  surname: Alkhatib
  fullname: Alkhatib, Soliman
BookMark eNptkUtOwzAQQC0EEr_uOIAXLAn4lzpeIsSnEhILYIcUTfyhhhAXxwX1JNyEC3AxnFIQQqzGHr95Gs9so_UudBahPUoOueLi6AnS9JARVnIh1tAWE5IXY1VV67_Om2jU9w-EEEaZYFJsobdJ59q57bTFweE0tXgf3zU2Ad4vXASdfOigxcZG_wLJv2Ssw2GWvM7ZPrQ-5XuO8wHsvx2zebTF8xxi5nDus_WdhYiv9TR-vBvf3duIbX4fivCrT1P8auFxSYYs9mmxizYctL0dreIOuj07vTm5KC6vzicnx5cFMEVEUWllKGukoKSqtAWgRnI-llxVSgOTlDeCirKRZWmcooo22jlGQcHYSTCW76DJl9cEeKhn0T9BXNQBfL1MhHhfL3_R2poZOjgJa8o8PMOVEUaq3EfJFPBKZtfBl0vH0PfRuh8fJfWwo3rYUb3aUcbZH1z7tBxJiuDb_4s-AWkgmuM
CitedBy_id crossref_primary_10_3934_math_2025889
Cites_doi 10.1007/s40314-025-03127-9
10.1155/2021/6694980
10.1155/2014/107535
10.1016/j.rinp.2024.107648
10.1140/epjp/s13360-023-04530-z
10.3934/cam.2023020
10.3934/math.20241229
10.1007/s11071-024-09438-6
10.1016/j.optcom.2004.03.005
10.1007/s11082-024-06705-z
10.32604/cmes.2022.022985
10.1088/1572-9494/ad84d3
10.1007/s11082-023-04599-x
10.3390/sym16111469
10.1186/s13661-024-01825-7
10.1016/j.asej.2024.103037
10.3934/math.20241100
10.1002/mma.8859
10.1038/s41598-024-74044-w
10.1007/s11082-024-06593-3
10.1142/S0217984924504335
10.1371/journal.pone.0297898
10.1038/s41598-024-74606-y
10.1038/s41598-024-72610-w
10.1016/j.aej.2023.01.053
10.1515/phys-2024-0093
10.3390/math12233643
10.59277/RomRepPhys.2024.76.108
10.1016/j.chaos.2022.112289
10.1515/nleng-2024-0025
10.1016/j.physleta.2017.07.012
10.3934/cam.2024012
10.1016/j.cam.2023.115089
10.1142/S0217979223502247
10.1515/zna-2006-3-401
10.1007/s11082-024-07244-3
10.1088/1402-4896/ad9cfa
10.1016/j.physleta.2022.128608
10.1063/5.0196639
ContentType Journal Article
CorporateAuthor Department of Mathematics, Faculty of Science, Islamic University of Madinah, Medina, Saudi Arabia
Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El Shorouk Academy, Cairo, Egypt
Department of Physics and Mathematics Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt
College of Engineering and Technology, American University in the Emirates (AUE), Dubai intel Academic City, P. O. Box 503000, Dubai, UAE
CorporateAuthor_xml – name: Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El Shorouk Academy, Cairo, Egypt
– name: Department of Mathematics, Faculty of Science, Islamic University of Madinah, Medina, Saudi Arabia
– name: College of Engineering and Technology, American University in the Emirates (AUE), Dubai intel Academic City, P. O. Box 503000, Dubai, UAE
– name: Department of Physics and Mathematics Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2025344
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 7508
ExternalDocumentID oai_doaj_org_article_2d19ca202b5242d39d4d79a29529a387
10_3934_math_2025344
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a2904-8c9d12b741088ceaa1d733673989ca2713b4145b755df9191bcff21a9a6f7ade3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Fri Oct 03 12:51:03 EDT 2025
Tue Nov 18 20:51:27 EST 2025
Sat Nov 29 08:07:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2904-8c9d12b741088ceaa1d733673989ca2713b4145b755df9191bcff21a9a6f7ade3
OpenAccessLink https://doaj.org/article/2d19ca202b5242d39d4d79a29529a387
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_2d19ca202b5242d39d4d79a29529a387
crossref_primary_10_3934_math_2025344
crossref_citationtrail_10_3934_math_2025344
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2025
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2025344-1
key-10.3934/math.2025344-40
key-10.3934/math.2025344-41
key-10.3934/math.2025344-7
key-10.3934/math.2025344-24
key-10.3934/math.2025344-6
key-10.3934/math.2025344-25
key-10.3934/math.2025344-9
key-10.3934/math.2025344-26
key-10.3934/math.2025344-8
key-10.3934/math.2025344-27
key-10.3934/math.2025344-3
key-10.3934/math.2025344-20
key-10.3934/math.2025344-2
key-10.3934/math.2025344-21
key-10.3934/math.2025344-5
key-10.3934/math.2025344-22
key-10.3934/math.2025344-4
key-10.3934/math.2025344-23
key-10.3934/math.2025344-17
key-10.3934/math.2025344-39
key-10.3934/math.2025344-18
key-10.3934/math.2025344-19
key-10.3934/math.2025344-30
key-10.3934/math.2025344-13
key-10.3934/math.2025344-35
key-10.3934/math.2025344-14
key-10.3934/math.2025344-36
key-10.3934/math.2025344-15
key-10.3934/math.2025344-37
key-10.3934/math.2025344-16
key-10.3934/math.2025344-38
key-10.3934/math.2025344-31
key-10.3934/math.2025344-10
key-10.3934/math.2025344-32
key-10.3934/math.2025344-11
key-10.3934/math.2025344-33
key-10.3934/math.2025344-12
key-10.3934/math.2025344-34
key-10.3934/math.2025344-28
key-10.3934/math.2025344-29
References_xml – ident: key-10.3934/math.2025344-21
  doi: 10.1007/s40314-025-03127-9
– ident: key-10.3934/math.2025344-16
  doi: 10.1155/2021/6694980
– ident: key-10.3934/math.2025344-38
  doi: 10.1155/2014/107535
– ident: key-10.3934/math.2025344-20
– ident: key-10.3934/math.2025344-8
  doi: 10.1016/j.rinp.2024.107648
– ident: key-10.3934/math.2025344-14
  doi: 10.1140/epjp/s13360-023-04530-z
– ident: key-10.3934/math.2025344-17
  doi: 10.3934/cam.2023020
– ident: key-10.3934/math.2025344-2
  doi: 10.3934/math.20241229
– ident: key-10.3934/math.2025344-1
  doi: 10.1007/s11071-024-09438-6
– ident: key-10.3934/math.2025344-5
  doi: 10.1016/j.optcom.2004.03.005
– ident: key-10.3934/math.2025344-9
  doi: 10.1007/s11082-024-06705-z
– ident: key-10.3934/math.2025344-24
  doi: 10.32604/cmes.2022.022985
– ident: key-10.3934/math.2025344-37
  doi: 10.1088/1572-9494/ad84d3
– ident: key-10.3934/math.2025344-41
  doi: 10.1007/s11082-023-04599-x
– ident: key-10.3934/math.2025344-34
  doi: 10.3390/sym16111469
– ident: key-10.3934/math.2025344-10
  doi: 10.1186/s13661-024-01825-7
– ident: key-10.3934/math.2025344-27
  doi: 10.1016/j.asej.2024.103037
– ident: key-10.3934/math.2025344-4
  doi: 10.3934/math.20241100
– ident: key-10.3934/math.2025344-23
  doi: 10.1002/mma.8859
– ident: key-10.3934/math.2025344-29
  doi: 10.1038/s41598-024-74044-w
– ident: key-10.3934/math.2025344-3
  doi: 10.1007/s11082-024-06593-3
– ident: key-10.3934/math.2025344-11
  doi: 10.1142/S0217984924504335
– ident: key-10.3934/math.2025344-26
  doi: 10.1371/journal.pone.0297898
– ident: key-10.3934/math.2025344-30
  doi: 10.1038/s41598-024-74606-y
– ident: key-10.3934/math.2025344-28
  doi: 10.1038/s41598-024-72610-w
– ident: key-10.3934/math.2025344-40
  doi: 10.1016/j.aej.2023.01.053
– ident: key-10.3934/math.2025344-32
  doi: 10.1515/phys-2024-0093
– ident: key-10.3934/math.2025344-36
  doi: 10.3390/math12233643
– ident: key-10.3934/math.2025344-35
  doi: 10.59277/RomRepPhys.2024.76.108
– ident: key-10.3934/math.2025344-6
  doi: 10.1016/j.chaos.2022.112289
– ident: key-10.3934/math.2025344-12
  doi: 10.1515/nleng-2024-0025
– ident: key-10.3934/math.2025344-15
  doi: 10.1016/j.physleta.2017.07.012
– ident: key-10.3934/math.2025344-18
  doi: 10.3934/cam.2024012
– ident: key-10.3934/math.2025344-22
  doi: 10.1016/j.cam.2023.115089
– ident: key-10.3934/math.2025344-33
  doi: 10.1142/S0217979223502247
– ident: key-10.3934/math.2025344-39
  doi: 10.1515/zna-2006-3-401
– ident: key-10.3934/math.2025344-7
  doi: 10.1007/s11082-024-07244-3
– ident: key-10.3934/math.2025344-13
  doi: 10.1088/1402-4896/ad9cfa
– ident: key-10.3934/math.2025344-25
  doi: 10.1016/j.physleta.2022.128608
– ident: key-10.3934/math.2025344-31
  doi: 10.1063/5.0196639
– ident: key-10.3934/math.2025344-19
SSID ssj0002124274
Score 2.3112764
Snippet This study investigated the dynamics of a pure-quartic nonlinear Schrödinger equation incorporating a $ \beta $-fractional derivative and weak nonlocal effects...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 7489
SubjectTerms fractional derivatives
improved modified extended tanh-function method
nonlinear schrödinger equation
soliton solutions
Title Influence of the $ \beta $-fractional derivative on optical soliton solutions of the pure-quartic nonlinear Schrödinger equation with weak nonlocality
URI https://doaj.org/article/2d19ca202b5242d39d4d79a29529a387
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yeNCD-MT1RQ7rScpumqRtjiq76MFFUGEPQsmrKMo-ug9v_g3_iX_AP-Yk6S7rQbx4KbQdpunMNDOTTr5BqJGwjCmZmCgG5UOCQlikeGoiCt9S0WIy1UT6ZhNpt5v1euJ2qdWXqwkL8MBBcM3YEKElpOiKgzcxVBhmUiFjwWMhaeb3kUPUs5RMuTkYJmQG-VaodKeCsibEf-7fQ8wpYz980BJUv_cpnU20UQWD-DwMYgut2P42Wr9ZIKmOd9DH9byLCB4UGG7gBn5UdiJxIyrKsCsBWBgwpJnH8MaDPh4M_Qo1HrviNjhf2Necx3Ba2mg09W-P-wEtQ5b4Tj-VX5_Gr_RhOwoo4Ngt1eI3K188pfN9ELnvoodO-_7yKqqaKUQgqxaLMi0MiRUEEDCvaCslMQ4JMaUic_KFXFUxwrhKOTeFgCxO6aKIiRQyKVJpLN1DNXiK3UfYqJaFTxdUCrmhhohDAzOuSWa5lomwdXQ2F2-uK6Rx1_DiNYeMwykjd8rIK2XU0emCehgQNn6hu3CaWtA4XGx_Aawlr6wl_8taDv6DySFac2MKlWhHqDYpp_YYrerZ5HlcnnhDhOPNe_sbMAXnIQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+the+%24+%5Cbeta+%24-fractional+derivative+on+optical+soliton+solutions+of+the+pure-quartic+nonlinear+Schr%C3%B6dinger+equation+with+weak+nonlocality&rft.jtitle=AIMS+mathematics&rft.au=Mahmoud+Soliman&rft.au=Hamdy+M.+Ahmed&rft.au=Niveen+Badra&rft.au=M.+Elsaid+Ramadan&rft.date=2025-03-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=10&rft.issue=3&rft.spage=7489&rft.epage=7508&rft_id=info:doi/10.3934%2Fmath.2025344&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2d19ca202b5242d39d4d79a29529a387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon