Qubit Mapping for Reconfigurable Atom Arrays

Because of the largest number of qubits available, and the massive parallel execution of entangling two-qubit gates, atom arrays is a promising platform for quantum computing. The qubits are selectively loaded into arrays of optical traps, some of which can be moved during the computation itself. By...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) s. 1 - 9
Hlavní autoři: Tan, Bochen, Bluvstein, Dolev, Lukin, Mikhail D., Cong, Jason
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 29.10.2022
Témata:
ISSN:1558-2434
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Because of the largest number of qubits available, and the massive parallel execution of entangling two-qubit gates, atom arrays is a promising platform for quantum computing. The qubits are selectively loaded into arrays of optical traps, some of which can be moved during the computation itself. By adjusting the locations of the traps and shining a specific global laser, different pairs of qubits, even those initially far away, can be entangled at different stages of the quantum program execution. In comparison, previous QC architectures only generate entanglement on a fixed set of quantum register pairs. Thus, reconfigurable atom arrays (RAA) present a new challenge for QC compilation, especially the qubit mapping/layout synthesis stage which decides the qubit placement and gate scheduling. In this paper, we consider an RAA QC architecture that contains multiple arrays, supports 2D array movements, represents cutting-edge experimental platforms, and is much more general than previous works. We start by systematically examining the fundamental constraints on RAA imposed by physics. Built upon this understanding, we discretize the state space of the architecture, and we formulate layout synthesis for such an architecture to a satisfactory modulo theories problem. Finally, we demonstrate our work by compiling the quantum approximate optimization algorithm (QAOA), one of the promising near-term quantum computing applications. Our layout synthesizer reduces the number of required native two-qubit gates in 22-qubit QAOA by 5.72x (geomean) compared to leading experiments on a superconducting architecture. Combined with a better coherence time, there is an order-of-magnitude increase in circuit fidelity.
AbstractList Because of the largest number of qubits available, and the massive parallel execution of entangling two-qubit gates, atom arrays is a promising platform for quantum computing. The qubits are selectively loaded into arrays of optical traps, some of which can be moved during the computation itself. By adjusting the locations of the traps and shining a specific global laser, different pairs of qubits, even those initially far away, can be entangled at different stages of the quantum program execution. In comparison, previous QC architectures only generate entanglement on a fixed set of quantum register pairs. Thus, reconfigurable atom arrays (RAA) present a new challenge for QC compilation, especially the qubit mapping/layout synthesis stage which decides the qubit placement and gate scheduling. In this paper, we consider an RAA QC architecture that contains multiple arrays, supports 2D array movements, represents cutting-edge experimental platforms, and is much more general than previous works. We start by systematically examining the fundamental constraints on RAA imposed by physics. Built upon this understanding, we discretize the state space of the architecture, and we formulate layout synthesis for such an architecture to a satisfactory modulo theories problem. Finally, we demonstrate our work by compiling the quantum approximate optimization algorithm (QAOA), one of the promising near-term quantum computing applications. Our layout synthesizer reduces the number of required native two-qubit gates in 22-qubit QAOA by 5.72x (geomean) compared to leading experiments on a superconducting architecture. Combined with a better coherence time, there is an order-of-magnitude increase in circuit fidelity.
Author Bluvstein, Dolev
Cong, Jason
Tan, Bochen
Lukin, Mikhail D.
Author_xml – sequence: 1
  givenname: Bochen
  surname: Tan
  fullname: Tan, Bochen
  email: bochentan@ucla.edu
  organization: University of California, Los Angeles,Los Angeles,CA,USA
– sequence: 2
  givenname: Dolev
  surname: Bluvstein
  fullname: Bluvstein, Dolev
  email: dbluvstein@g.harvard.edu
  organization: Harvard University,Department of Physics,Cambridge,MA,USA
– sequence: 3
  givenname: Mikhail D.
  surname: Lukin
  fullname: Lukin, Mikhail D.
  email: lukin@physics.harvard.edu
  organization: Harvard University,Department of Physics,Cambridge,MA,USA
– sequence: 4
  givenname: Jason
  surname: Cong
  fullname: Cong, Jason
  email: cong@cs.ucla.edu
  organization: University of California, Los Angeles,Los Angeles,CA,USA
BookMark eNotzL1OwzAUQGGDQKKUzCwMeQBS7vW1c-2xqviTihAI5sp27CqoTSInHfr2gGA6w5G-S3HW9V0U4hphgaj0HWkwpOWCtLJEeCIKy-ZnAFmJrE7FDLU2lVSkLkQxjl8AIA0jM8zE7dvBt1P54oah7bZl6nP5HkPfpXZ7yM7vYrmc-n25zNkdxytxntxujMV_5-Lz4f5j9VStXx-fV8t15aSxU5WkTzE0Dn1ihxyCTBowENRWB1aaTZBRAaoGqXaNanyqpYzoVUpkuaG5uPlz2xjjZsjt3uXjBuEXYKJvSbREQQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3508352.3549331
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781450392174
1450392172
EISSN 1558-2434
EndPage 9
ExternalDocumentID 10069573
Genre orig-research
GrantInformation_xml – fundername: Synopsys
  funderid: 10.13039/100007140
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a289t-f2bfecda1bf7a17cc2f501c30695c74578c2e4014d136ad4dbf622e1b4ff397d3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981574300106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:46:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-f2bfecda1bf7a17cc2f501c30695c74578c2e4014d136ad4dbf622e1b4ff397d3
OpenAccessLink https://dl.acm.org/doi/pdf/10.1145/3508352.3549331
PageCount 9
ParticipantIDs ieee_primary_10069573
PublicationCentury 2000
PublicationDate 2022-Oct.-29
PublicationDateYYYYMMDD 2022-10-29
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)
PublicationTitleAbbrev ICCAD
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002871770
ssj0020286
Score 2.4097047
Snippet Because of the largest number of qubits available, and the massive parallel execution of entangling two-qubit gates, atom arrays is a promising platform for...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms allocation
atom array
layout synthesis
placement
quantum circuit
quantum computing
qubit mapping
reconfigurable
scheduling
Title Qubit Mapping for Reconfigurable Atom Arrays
URI https://ieeexplore.ieee.org/document/10069573
WOSCitedRecordID wos000981574300106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RigEWXkW85YGRlPgROxkrRMUAVZEAdav8rDqQojRB4t9ju6F0YWCzPPlkn_19d_7uAK61EZ5zMZzwghtPUBxLcqVEYopU4VQr62Ki_e1RjEb5ZFKMW7F61MJYa-PnM9sPw5jLNwvdhFCZ9_CUF5mgHegIIVZirXVAJUB_EQ5fy7b8BG9r-WCW3dIsgo0-9YQotpTbaKYS35Lh3j9XsQ-9X1UeGq_fmwPYsuUh7G4UFDyCm-dGzWv0JEPVhRnygBQFflm6-aypgkgKDerFOxpUlfxa9uB1eP9y95C0_RAS6WlRnTiinNVGYuWExEJr4rIUaxqWowXzvqeJ9XyJGUy5NMwoxwmxWDHnPOww9Bi65aK0J4BybkjKpIdTjoVwoiwCTqJEW2IJJ_gUesHw6ceq5MX0x-azP-bPYYcEXYC_1ElxAd26auwlbOvPer6sruJGfQPkH5FZ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIWXkW8ycBISuw4djNWiKqItipSQd0qP6sOJChNkPj32G4oXRjYLE8-2Wd_352_O4BbqZjlXASFNKXKEhRDwrYQLFRpJFAkhTY-0f7WZ8NhezJJR7VY3WthtNb-85luuaHP5atcVi5UZj08omnC4k3YSgjBaCnXWoVUHPhn7vjVfMtO0LqaDyLJfZx4uNGKLSXyTeXW2qn416S7_891HEDzV5cXjFYvziFs6OwI9tZKCh7D3Usl5mUw4K7uwiywkDRwDDMz81lVOJlU0Cnz96BTFPxr0YTX7uP4oRfWHRFCbolRGRosjJaKI2EYR0xKbJIIydgtRzJivU9ibRkTUSimXBElDMVYI0GMscBDxSfQyPJMn0LQpgpHhFtAZYgLKPLUIaUYS401phidQdMZPv1YFr2Y_th8_sf8Dez0xoP-tP80fL6AXexUAvaKx-klNMqi0lewLT_L-aK49pv2DamclKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+On+Computer+Aided+Design+%28ICCAD%29&rft.atitle=Qubit+Mapping+for+Reconfigurable+Atom+Arrays&rft.au=Tan%2C+Bochen&rft.au=Bluvstein%2C+Dolev&rft.au=Lukin%2C+Mikhail+D.&rft.au=Cong%2C+Jason&rft.date=2022-10-29&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3508352.3549331&rft.externalDocID=10069573