No-Rainbow Problem and the Surjective Constraint Satisfaction Problem
The Surjective Constraint Satisfaction Problem (SCSP) is the problem of deciding whether there exists a surjective assignment to a set of variables subject to some specified constraints, where a surjective assignment is an assignment containing all elements of the domain. In this paper we show that...
Uložené v:
| Vydané v: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 7 |
|---|---|
| Hlavný autor: | |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
29.06.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The Surjective Constraint Satisfaction Problem (SCSP) is the problem of deciding whether there exists a surjective assignment to a set of variables subject to some specified constraints, where a surjective assignment is an assignment containing all elements of the domain. In this paper we show that the most famous SCSP, called No-Rainbow Problem, is NP-Hard. Additionally, we disprove the conjecture saying that the SCSP over a constraint language Γ and the CSP over the same language with constants have the same computational complexity up to poly-time reductions. Our counter-example also shows that the complexity of the SCSP cannot be described in terms of polymorphisms of the constraint language. |
|---|---|
| DOI: | 10.1109/LICS52264.2021.9470632 |