Gödel-McKinsey-Tarski and Blok-Esakia for Heyting-Lewis Implication
Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of axioms for strict implication provable in classical modal logics. Variants of this logic are surprisingly widespread: they appear as Curry-H...
Uložené v:
| Vydané v: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 15 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
29.06.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of axioms for strict implication provable in classical modal logics. Variants of this logic are surprisingly widespread: they appear as Curry-Howard correspondents of (simple type theory extended with) Haskell-style arrows, in preservativity logic of Heyting arithmetic, in the proof theory of guarded (co)recursion, and in the generalization of intuitionistic epistemic logic.Heyting-Lewis Logic can be interpreted in intuitionistic Kripke frames extended with a binary relation to account for strict implication. We use this semantics to define descriptive frames (generalisations of Esakia spaces), and establish a categorical duality between the algebraic interpretation and the frame semantics. We then adapt a transformation by Wolter and Zakharyaschev to translate Heyting-Lewis Logic to classical modal logic with two unary operators. This allows us to prove a Blok-Esakia theorem that we then use to obtain both known and new canonicity and correspondence theorems, and the finite model property and decidability for a large family of Heyting-Lewis logics. |
|---|---|
| DOI: | 10.1109/LICS52264.2021.9470508 |