Gödel-McKinsey-Tarski and Blok-Esakia for Heyting-Lewis Implication

Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of axioms for strict implication provable in classical modal logics. Variants of this logic are surprisingly widespread: they appear as Curry-H...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 1 - 15
Main Authors: de Groot, Jim, Litak, Tadeusz, Pattinson, Dirk
Format: Conference Proceeding
Language:English
Published: IEEE 29.06.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of axioms for strict implication provable in classical modal logics. Variants of this logic are surprisingly widespread: they appear as Curry-Howard correspondents of (simple type theory extended with) Haskell-style arrows, in preservativity logic of Heyting arithmetic, in the proof theory of guarded (co)recursion, and in the generalization of intuitionistic epistemic logic.Heyting-Lewis Logic can be interpreted in intuitionistic Kripke frames extended with a binary relation to account for strict implication. We use this semantics to define descriptive frames (generalisations of Esakia spaces), and establish a categorical duality between the algebraic interpretation and the frame semantics. We then adapt a transformation by Wolter and Zakharyaschev to translate Heyting-Lewis Logic to classical modal logic with two unary operators. This allows us to prove a Blok-Esakia theorem that we then use to obtain both known and new canonicity and correspondence theorems, and the finite model property and decidability for a large family of Heyting-Lewis logics.
AbstractList Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of axioms for strict implication provable in classical modal logics. Variants of this logic are surprisingly widespread: they appear as Curry-Howard correspondents of (simple type theory extended with) Haskell-style arrows, in preservativity logic of Heyting arithmetic, in the proof theory of guarded (co)recursion, and in the generalization of intuitionistic epistemic logic.Heyting-Lewis Logic can be interpreted in intuitionistic Kripke frames extended with a binary relation to account for strict implication. We use this semantics to define descriptive frames (generalisations of Esakia spaces), and establish a categorical duality between the algebraic interpretation and the frame semantics. We then adapt a transformation by Wolter and Zakharyaschev to translate Heyting-Lewis Logic to classical modal logic with two unary operators. This allows us to prove a Blok-Esakia theorem that we then use to obtain both known and new canonicity and correspondence theorems, and the finite model property and decidability for a large family of Heyting-Lewis logics.
Author Litak, Tadeusz
Pattinson, Dirk
de Groot, Jim
Author_xml – sequence: 1
  givenname: Jim
  surname: de Groot
  fullname: de Groot, Jim
  email: jim.degroot@anu.edu.au
  organization: The Australian National University,School of Computing
– sequence: 2
  givenname: Tadeusz
  surname: Litak
  fullname: Litak, Tadeusz
  email: tadeusz.litak@fau.de
  organization: FAU Erlangen-Nuremberg,Chair For Theoretical Computer Science
– sequence: 3
  givenname: Dirk
  surname: Pattinson
  fullname: Pattinson, Dirk
  email: dirk.pattinson@anu.edu.au
  organization: The Australian National University,School of Computing
BookMark eNotz0FOwzAQQFEjgQSUnAAJ5QIOY8dxPEsIpY0IYkFZV1PHRiZpUsWRUC_GBbgYC7r6uyf9a3Y-jINj7E5AJgTgfVNX74WUWmUSpMhQlVCAOWMJlkZoXShlsNCXLInxCwCkKQUovGJPq9-f1vX81b6EIboj39AUu5DS0KaP_djxZaQuUOrHKV274xyGT9647xDTen_og6U5jMMNu_DUR5ecumAfz8tNtebN26quHhpO0uDMnUaDBoTeWZ87ibktUUrVEpZFYY3IybYWBVoQ3pd6p73METQQaSTyNl-w2383OOe2hynsaTpuT6_5H9noTKQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470508
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 15
ExternalDocumentID 9470508
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-e69898016bcf3e293c79224da9755c813acdc919c01ff76b6f239060aa69aafc3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-e69898016bcf3e293c79224da9755c813acdc919c01ff76b6f239060aa69aafc3
PageCount 15
ParticipantIDs ieee_primary_9470508
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.197888
Snippet Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Computational modeling
Computer science
Semantics
Title Gödel-McKinsey-Tarski and Blok-Esakia for Heyting-Lewis Implication
URI https://ieeexplore.ieee.org/document/9470508
WOSCitedRecordID wos000947350400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA21uHBVtRXfZOHStJN5JJOttbXFWgpW6K7kcQeGlql0WqU_5g_4YybTsSK4cRcCIXBDOOfe3JOD0I2QsScjKokx3CehNAlRQGMSs0RpY5hgunAtGfDhMJ5MxKiCbndaGAAoms-g6YbFW75Z6LUrlbVEyL3IKXv3OGdbrdaunuKYv2W7pQiYeqI16LefHbtwlROfNsvFv1xUChDp1v63_SFq_Kjx8GiHM0eoAtkxqn3bMeDydtbR_cPnh4E5edKPaZbDhoxt0jpLscwMvpsvZqSTW7oosaWpuAcb1-9MBvCe5rj_01beQC_dzrjdI6VJApE2V1oRKBwgLXFTOgnAgrfmwsKykYJHkY5pILXRggrt0SThTLHED4THPCmZkDLRwQmqZosMThEGalQUSBvKCEIhhWJKWjoQcgVcsIifoboLyvR1-w_GtIzH-d_TF-jAxd21VfniElVXyzVcoX39tkrz5XVxeF-kzJuH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da8IwFA3iBtuT23Tse3nY46KtbZPmdU6nWEWYA98kH7dQlDqsbvjH9gf2x5Z0nTLYy95CIBBuCOfcm3tyELrjInRE4AqiNWsSX-iYSHBDEtJYKq0ppyp3LYnYcBhOJnxUQvdbLQwA5M1nULfD_C1fL9Talsoa3GdOYJW9e9Y5q1BrbSsqlvsbvlvIgF2HN6Je69nyC1s7abr1YvkvH5UcRjqV_23gCNV2ejw82iLNMSpBeoIqP4YMuLifVfT49PmhYU4Gqp-kGWzI2KStswSLVOOH-WJG2pkhjAIbooq7sLEdzySC9yTDvV1jeQ29dNrjVpcUNglEmGxpRSD3gDTUTarYAwPfinEDzFpwFgQqdD2htOIuV44bx4xKGjc97lBHCMqFiJV3isrpIoUzhMHVMvCECWUAPhdcUikMIfCZBMZpwM5R1QZl-vr9E8a0iMfF39O36KA7HkTTqDfsX6JDewa2yarJr1B5tVzDNdpXb6skW97kB_kF8ESe0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=G%C3%B6del-McKinsey-Tarski+and+Blok-Esakia+for+Heyting-Lewis+Implication&rft.au=de+Groot%2C+Jim&rft.au=Litak%2C+Tadeusz&rft.au=Pattinson%2C+Dirk&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FLICS52264.2021.9470508&rft.externalDocID=9470508