Gödel-McKinsey-Tarski and Blok-Esakia for Heyting-Lewis Implication

Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of axioms for strict implication provable in classical modal logics. Variants of this logic are surprisingly widespread: they appear as Curry-H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science S. 1 - 15
Hauptverfasser: de Groot, Jim, Litak, Tadeusz, Pattinson, Dirk
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 29.06.2021
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of axioms for strict implication provable in classical modal logics. Variants of this logic are surprisingly widespread: they appear as Curry-Howard correspondents of (simple type theory extended with) Haskell-style arrows, in preservativity logic of Heyting arithmetic, in the proof theory of guarded (co)recursion, and in the generalization of intuitionistic epistemic logic.Heyting-Lewis Logic can be interpreted in intuitionistic Kripke frames extended with a binary relation to account for strict implication. We use this semantics to define descriptive frames (generalisations of Esakia spaces), and establish a categorical duality between the algebraic interpretation and the frame semantics. We then adapt a transformation by Wolter and Zakharyaschev to translate Heyting-Lewis Logic to classical modal logic with two unary operators. This allows us to prove a Blok-Esakia theorem that we then use to obtain both known and new canonicity and correspondence theorems, and the finite model property and decidability for a large family of Heyting-Lewis logics.
AbstractList Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of axioms for strict implication provable in classical modal logics. Variants of this logic are surprisingly widespread: they appear as Curry-Howard correspondents of (simple type theory extended with) Haskell-style arrows, in preservativity logic of Heyting arithmetic, in the proof theory of guarded (co)recursion, and in the generalization of intuitionistic epistemic logic.Heyting-Lewis Logic can be interpreted in intuitionistic Kripke frames extended with a binary relation to account for strict implication. We use this semantics to define descriptive frames (generalisations of Esakia spaces), and establish a categorical duality between the algebraic interpretation and the frame semantics. We then adapt a transformation by Wolter and Zakharyaschev to translate Heyting-Lewis Logic to classical modal logic with two unary operators. This allows us to prove a Blok-Esakia theorem that we then use to obtain both known and new canonicity and correspondence theorems, and the finite model property and decidability for a large family of Heyting-Lewis logics.
Author Litak, Tadeusz
Pattinson, Dirk
de Groot, Jim
Author_xml – sequence: 1
  givenname: Jim
  surname: de Groot
  fullname: de Groot, Jim
  email: jim.degroot@anu.edu.au
  organization: The Australian National University,School of Computing
– sequence: 2
  givenname: Tadeusz
  surname: Litak
  fullname: Litak, Tadeusz
  email: tadeusz.litak@fau.de
  organization: FAU Erlangen-Nuremberg,Chair For Theoretical Computer Science
– sequence: 3
  givenname: Dirk
  surname: Pattinson
  fullname: Pattinson, Dirk
  email: dirk.pattinson@anu.edu.au
  organization: The Australian National University,School of Computing
BookMark eNotz0FOwzAQQFEjgQSUnAAJ5QIOY8dxPEsIpY0IYkFZV1PHRiZpUsWRUC_GBbgYC7r6uyf9a3Y-jINj7E5AJgTgfVNX74WUWmUSpMhQlVCAOWMJlkZoXShlsNCXLInxCwCkKQUovGJPq9-f1vX81b6EIboj39AUu5DS0KaP_djxZaQuUOrHKV274xyGT9647xDTen_og6U5jMMNu_DUR5ecumAfz8tNtebN26quHhpO0uDMnUaDBoTeWZ87ibktUUrVEpZFYY3IybYWBVoQ3pd6p73METQQaSTyNl-w2383OOe2hynsaTpuT6_5H9noTKQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470508
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 15
ExternalDocumentID 9470508
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-e69898016bcf3e293c79224da9755c813acdc919c01ff76b6f239060aa69aafc3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-e69898016bcf3e293c79224da9755c813acdc919c01ff76b6f239060aa69aafc3
PageCount 15
ParticipantIDs ieee_primary_9470508
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.1985002
Snippet Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Computational modeling
Computer science
Semantics
Title Gödel-McKinsey-Tarski and Blok-Esakia for Heyting-Lewis Implication
URI https://ieeexplore.ieee.org/document/9470508
WOSCitedRecordID wos000947350400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2QePCECsbv9ODRwnZLt_QqghCRkIgJN9Jtp8kGshgWNPwx_4B_zHZZMSZevDVNmibTNO_NdF4fQjfWmDA0kSZSh5w0mzwkKqAxaRqmQWhlxVYoPBDDYWsykaMSut1pYQAgbz6Duh_mb_lmode-VNaQTRFwr-zdE0JstVq7eopn_o7tFiJgGsjGoN9-9uzCV05CWi8W_3JRyUGkW_nf9oeo9qPGw6MdzhyhEqTHqPJtx4CL21lF9w-fHwbm5Ek_JmkGGzJ2SesswSo1-G6-mJFO5uiiwo6m4h5sfL8zGcB7kuH-T1t5Db10O-N2jxQmCUS5XGlFIHeAdMQt1paBA28tpINlo6TgXLcoU9poSaUOqLUiiiMbMhlEgVKRVMpqdoLK6SKFU4RjyYEbKi34504hFXPcr-UyLsG4ZTQ-Q1UflOnr9h-MaRGP87-nL9CBj7tvqwrlJSqvlmu4Qvv6bZVky-v88L4A6Pqatg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LagIxFA3FFtqVbbX03Vl02egkmUzMtlarOIpQC-4kkwcMylgcbfHH-gP9sSbjVCl0010IBMK9hHPu4-QCcG-UwliFEnKJKQwCiqHwUQwDRaRmUhi2EQpHbDBojMd8uAcetloYrXXefKZrbpnX8tVcrlyqrM4D5lOn7N2nQYDRRq21zag47m_5biEDRj6vR93mi-MXLneCUa04_muOSg4j7fL_LnAMqjs9njfcIs0J2NPpKSj_DGTwivdZAU_PX59Kz2Bf9pI002s4smHrNPFEqrzH2XwKW5kljMKzRNXr6LXreIaR_kgyr7trLK-C13Zr1OzAYkwCFDZaWkKdz4C01C2WhmgL35JxC8xKcEapbCAipJIccekjY1gYhwYT7oe-ECEXwkhyBkrpPNXnwIs51VQhbrQreDIuiGV_DRtzMUINQfEFqDijTN42P2FMCntc_r19Bw47o340ibqD3hU4cj5wTVaYX4PScrHSN-BAvi-TbHGbO_IbJpSd_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=G%C3%B6del-McKinsey-Tarski+and+Blok-Esakia+for+Heyting-Lewis+Implication&rft.au=de+Groot%2C+Jim&rft.au=Litak%2C+Tadeusz&rft.au=Pattinson%2C+Dirk&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FLICS52264.2021.9470508&rft.externalDocID=9470508