Gödel-McKinsey-Tarski and Blok-Esakia for Heyting-Lewis Implication
Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of axioms for strict implication provable in classical modal logics. Variants of this logic are surprisingly widespread: they appear as Curry-H...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science S. 1 - 15 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
29.06.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of axioms for strict implication provable in classical modal logics. Variants of this logic are surprisingly widespread: they appear as Curry-Howard correspondents of (simple type theory extended with) Haskell-style arrows, in preservativity logic of Heyting arithmetic, in the proof theory of guarded (co)recursion, and in the generalization of intuitionistic epistemic logic.Heyting-Lewis Logic can be interpreted in intuitionistic Kripke frames extended with a binary relation to account for strict implication. We use this semantics to define descriptive frames (generalisations of Esakia spaces), and establish a categorical duality between the algebraic interpretation and the frame semantics. We then adapt a transformation by Wolter and Zakharyaschev to translate Heyting-Lewis Logic to classical modal logic with two unary operators. This allows us to prove a Blok-Esakia theorem that we then use to obtain both known and new canonicity and correspondence theorems, and the finite model property and decidability for a large family of Heyting-Lewis logics. |
|---|---|
| AbstractList | Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of axioms for strict implication provable in classical modal logics. Variants of this logic are surprisingly widespread: they appear as Curry-Howard correspondents of (simple type theory extended with) Haskell-style arrows, in preservativity logic of Heyting arithmetic, in the proof theory of guarded (co)recursion, and in the generalization of intuitionistic epistemic logic.Heyting-Lewis Logic can be interpreted in intuitionistic Kripke frames extended with a binary relation to account for strict implication. We use this semantics to define descriptive frames (generalisations of Esakia spaces), and establish a categorical duality between the algebraic interpretation and the frame semantics. We then adapt a transformation by Wolter and Zakharyaschev to translate Heyting-Lewis Logic to classical modal logic with two unary operators. This allows us to prove a Blok-Esakia theorem that we then use to obtain both known and new canonicity and correspondence theorems, and the finite model property and decidability for a large family of Heyting-Lewis logics. |
| Author | Litak, Tadeusz Pattinson, Dirk de Groot, Jim |
| Author_xml | – sequence: 1 givenname: Jim surname: de Groot fullname: de Groot, Jim email: jim.degroot@anu.edu.au organization: The Australian National University,School of Computing – sequence: 2 givenname: Tadeusz surname: Litak fullname: Litak, Tadeusz email: tadeusz.litak@fau.de organization: FAU Erlangen-Nuremberg,Chair For Theoretical Computer Science – sequence: 3 givenname: Dirk surname: Pattinson fullname: Pattinson, Dirk email: dirk.pattinson@anu.edu.au organization: The Australian National University,School of Computing |
| BookMark | eNotz0FOwzAQQFEjgQSUnAAJ5QIOY8dxPEsIpY0IYkFZV1PHRiZpUsWRUC_GBbgYC7r6uyf9a3Y-jINj7E5AJgTgfVNX74WUWmUSpMhQlVCAOWMJlkZoXShlsNCXLInxCwCkKQUovGJPq9-f1vX81b6EIboj39AUu5DS0KaP_djxZaQuUOrHKV274xyGT9647xDTen_og6U5jMMNu_DUR5ecumAfz8tNtebN26quHhpO0uDMnUaDBoTeWZ87ibktUUrVEpZFYY3IybYWBVoQ3pd6p73METQQaSTyNl-w2383OOe2hynsaTpuT6_5H9noTKQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/LICS52264.2021.9470508 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781665448956 1665448954 |
| EndPage | 15 |
| ExternalDocumentID | 9470508 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIO |
| ID | FETCH-LOGICAL-a289t-e69898016bcf3e293c79224da9755c813acdc919c01ff76b6f239060aa69aafc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:26:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a289t-e69898016bcf3e293c79224da9755c813acdc919c01ff76b6f239060aa69aafc3 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9470508 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-June-29 |
| PublicationDateYYYYMMDD | 2021-06-29 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-June-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science |
| PublicationTitleAbbrev | LICS |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002871049 |
| Score | 2.1985002 |
| Snippet | Heyting-Lewis Logic is the extension of intuitionistic propositional logic with a strict implication connective that satisfies the constructive counterparts of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Computational modeling Computer science Semantics |
| Title | Gödel-McKinsey-Tarski and Blok-Esakia for Heyting-Lewis Implication |
| URI | https://ieeexplore.ieee.org/document/9470508 |
| WOSCitedRecordID | wos000947350400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2QePCECsbv9ODRwnZLt_QqghCRkIgJN9Jtp8kGshgWNPwx_4B_zHZZMSZevDVNmibTNO_NdF4fQjfWmDA0kSZSh5w0mzwkKqAxaRqmQWhlxVYoPBDDYWsykaMSut1pYQAgbz6Duh_mb_lmode-VNaQTRFwr-zdE0JstVq7eopn_o7tFiJgGsjGoN9-9uzCV05CWi8W_3JRyUGkW_nf9oeo9qPGw6MdzhyhEqTHqPJtx4CL21lF9w-fHwbm5Ek_JmkGGzJ2SesswSo1-G6-mJFO5uiiwo6m4h5sfL8zGcB7kuH-T1t5Db10O-N2jxQmCUS5XGlFIHeAdMQt1paBA28tpINlo6TgXLcoU9poSaUOqLUiiiMbMhlEgVKRVMpqdoLK6SKFU4RjyYEbKi34504hFXPcr-UyLsG4ZTQ-Q1UflOnr9h-MaRGP87-nL9CBj7tvqwrlJSqvlmu4Qvv6bZVky-v88L4A6Pqatg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LagIxFA3FFtqVbbX03Vl02egkmUzMtlarOIpQC-4kkwcMylgcbfHH-gP9sSbjVCl0010IBMK9hHPu4-QCcG-UwliFEnKJKQwCiqHwUQwDRaRmUhi2EQpHbDBojMd8uAcetloYrXXefKZrbpnX8tVcrlyqrM4D5lOn7N2nQYDRRq21zag47m_5biEDRj6vR93mi-MXLneCUa04_muOSg4j7fL_LnAMqjs9njfcIs0J2NPpKSj_DGTwivdZAU_PX59Kz2Bf9pI002s4smHrNPFEqrzH2XwKW5kljMKzRNXr6LXreIaR_kgyr7trLK-C13Zr1OzAYkwCFDZaWkKdz4C01C2WhmgL35JxC8xKcEapbCAipJIccekjY1gYhwYT7oe-ECEXwkhyBkrpPNXnwIs51VQhbrQreDIuiGV_DRtzMUINQfEFqDijTN42P2FMCntc_r19Bw47o340ibqD3hU4cj5wTVaYX4PScrHSN-BAvi-TbHGbO_IbJpSd_Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=G%C3%B6del-McKinsey-Tarski+and+Blok-Esakia+for+Heyting-Lewis+Implication&rft.au=de+Groot%2C+Jim&rft.au=Litak%2C+Tadeusz&rft.au=Pattinson%2C+Dirk&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FLICS52264.2021.9470508&rft.externalDocID=9470508 |