On the logical structure of choice and bar induction principles

We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or "effective" view of respectively ill- and well-foundedness properties to an "extensional" or "ideal" view of...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 1 - 13
Main Authors: Brede, Nuria, Herbelin, Hugo
Format: Conference Proceeding
Language:English
Published: IEEE 29.06.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or "effective" view of respectively ill- and well-foundedness properties to an "extensional" or "ideal" view of these properties. After classifying and analysing the relations between different intensional definitions of ill-foundedness and well-foundedness, we introduce, for a domain A, a codomain B and a "filter" T on finite approximations of functions from A to B, a generalised form GDC ABT of the axiom of dependent choice and dually a generalised bar induction principle GBI ABT such that:GDC ABT intuitionistically captures the strength of*the general axiom of choice expressed as ∀a∃bR(a,b) ⇒ ∃α∀aR(a,α(a))) when T is a filter that derives point-wise from a relation R on A × B without introducing further constraints,*the Boolean Prime Filter Theorem / Ultrafilter Theorem if B is the two-element set \mathbb{B} (for a constructive definition of prime filter),*the axiom of dependent choice if A = \mathbb{N},*Weak Kőnig's Lemma if A = \mathbb{N} and B = \mathbb{B} (up to weak classical reasoning).GBI ABT intuitionistically captures the strength of*Gödel's completeness theorem in the form validity implies provability for entailment relations if B = \mathbb{B} (for a constructive definition of validity),*bar induction if A = \mathbb{N},*the Weak Fan Theorem if A = \mathbb{N} and B = \mathbb{B}.Contrastingly, even though GDC ABT and GBI ABT smoothly capture several variants of choice and bar induction, some instances are inconsistent, e.g. when A is {\mathbb{B}^{\mathbb{N}}} and B is \mathbb{N}.
AbstractList We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or "effective" view of respectively ill- and well-foundedness properties to an "extensional" or "ideal" view of these properties. After classifying and analysing the relations between different intensional definitions of ill-foundedness and well-foundedness, we introduce, for a domain A, a codomain B and a "filter" T on finite approximations of functions from A to B, a generalised form GDC ABT of the axiom of dependent choice and dually a generalised bar induction principle GBI ABT such that:GDC ABT intuitionistically captures the strength of*the general axiom of choice expressed as ∀a∃bR(a,b) ⇒ ∃α∀aR(a,α(a))) when T is a filter that derives point-wise from a relation R on A × B without introducing further constraints,*the Boolean Prime Filter Theorem / Ultrafilter Theorem if B is the two-element set \mathbb{B} (for a constructive definition of prime filter),*the axiom of dependent choice if A = \mathbb{N},*Weak Kőnig's Lemma if A = \mathbb{N} and B = \mathbb{B} (up to weak classical reasoning).GBI ABT intuitionistically captures the strength of*Gödel's completeness theorem in the form validity implies provability for entailment relations if B = \mathbb{B} (for a constructive definition of validity),*bar induction if A = \mathbb{N},*the Weak Fan Theorem if A = \mathbb{N} and B = \mathbb{B}.Contrastingly, even though GDC ABT and GBI ABT smoothly capture several variants of choice and bar induction, some instances are inconsistent, e.g. when A is {\mathbb{B}^{\mathbb{N}}} and B is \mathbb{N}.
Author Herbelin, Hugo
Brede, Nuria
Author_xml – sequence: 1
  givenname: Nuria
  surname: Brede
  fullname: Brede, Nuria
  organization: University of Potsdam,Germany
– sequence: 2
  givenname: Hugo
  surname: Herbelin
  fullname: Herbelin, Hugo
  organization: Université de Paris, CNRS, IRIF,Inria Paris,France
BookMark eNotj8FKxDAURSMoqDP9AkHyA615aZLmrUSKjgOFWeishzR5dSI1HdrOwr-34KzO4sC53Ht2nYZEjD2CKAAEPjXb-kNLaVQhhYQCVSW0LK9YhpUFY7RSFrW5Zdk0fQshpK1AKLxjz7vE5yPxfviK3vV8msezn88j8aHj_jhET9ylwFs38pjC4uKQ-GmMycdTT9Oa3XSunyi7cMX2b6-f9Xve7Dbb-qXJnbQ45wFajdAa6aRpSwXCEVkJBoPsrCKDtlqkxWAqoTpvUFFJARDRmlZoKFfs4b8bieiw7P-48fdwuVn-Ada8Sc0
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470523
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470523
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-d1b591b62a26b3410aee82169d2f84e6987b6289d6704fc694e3ed199986b0513
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-d1b591b62a26b3410aee82169d2f84e6987b6289d6704fc694e3ed199986b0513
PageCount 13
ParticipantIDs ieee_primary_9470523
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.2046041
Snippet We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bars
Computer science
Fans
Title On the logical structure of choice and bar induction principles
URI https://ieeexplore.ieee.org/document/9470523
WOSCitedRecordID wos000947350400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB5UeujJtlr6Zg89Npps1n2cepBKC2KFPvAmm-ws9BLF1-_vbBIthV56C3kQMmFnvvl25huAeyEGlsJQTrmJySKhYxfZMBIwkaGcymqhSwHTz7GaTPRsZqYNeDj0wiBiWXyGvXBY7uW7Rb4NVFnfCBVYzCY0lVJVr9aBTwnIn9Bu3QScxKY_fhm-BXQRmBOe9OqHf01RKYPIqP2_159A96cbj00PceYUGlicQXs_joHVq7MDj68FIzjHam_GKmnY7QrZwjPycuQSmC0cy-yKUSZeycay5Z5tX3fhY_T0PnyO6vkIkaU0aRO5JBuYJJPccplRNIotouaJNI57LVAareiiNk6qWPhcGoEpuqA7oGVGizE9h1axKPACmPApRykpzaa7vEi1J2jCuc9yGTuKWJfQCfaYLysJjHltiqu_T1_DcTB5qKji5gZa9Ll4C0f5bvO1Xt2V_-0bh_mWlg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggRTgRbxxgMjaRPHdeyJoaJqRSiVKKhbZce2xJJWffD7OSdpERILW5SHlFzku-8-330HcM9YV2EYyjA3kTpgIjSB8iMBI-7LqZRgohAw_UiT0UhMp3Jcg4ddL4y1tig-s21_WOzlm3m28VRZR7LEs5h7sN9ljEZlt9aOUfHYH_Fu1QYchbKTDntvHl947oRG7erxX3NUijDSb_zvBY6h9dOPR8a7SHMCNZufQmM7kIFU67MJj685QUBHKn9GSnHYzdKSuSPo59ApEJUbotWSYC5eCseSxZZvX7Xgvf806Q2CakJCoDBRWgcm0l0ZaU4V5RrjUaisFTTi0lAnmOVSJHhRSMOTkLmMS2Zja7zygOAal2N8BvV8nttzIMzF1HKOiTbe5VgsHIITSp3OeGgwZl1A09tjtihFMGaVKS7_Pn0Hh4PJSzpLh6PnKzjy5vf1VVReQx0_3d7AQfa1_lwtb4t_-A2O45nd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=On+the+logical+structure+of+choice+and+bar+induction+principles&rft.au=Brede%2C+Nuria&rft.au=Herbelin%2C+Hugo&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470523&rft.externalDocID=9470523