Mining and Recommending Mobile App Features using Data-driven Analytics

Mobile app development necessitates the extraction of domain specific, essential and innovative features, aligning with user needs and market dynamics. Identifying features to provide competitive edge to the app developers, is a non-trivial task that is often performed manually by product managers....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM International Conference on Automated Software Engineering : [proceedings] s. 2432 - 2434
Hlavní autor: Ali, Ramsha
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 27.10.2024
Témata:
ISSN:2643-1572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Mobile app development necessitates the extraction of domain specific, essential and innovative features, aligning with user needs and market dynamics. Identifying features to provide competitive edge to the app developers, is a non-trivial task that is often performed manually by product managers. This study addresses the challenge of mining and recommending app features by automatically identifying similar apps corresponding to the description of apps provided by the user. The proposed approach, APPFIRE, integrates Named Entity Recognition (NER) for feature extraction and BERT (Bidirectional Encoder Representations from Transformers) coupled with Topic Modeling for identifying similar apps. Our top-performing model, utilizing Non-negative Matrix Factorization (NMF) for Topic Modeling with SBERT embeddings, achieves an F1 score of 87.38%.
ISSN:2643-1572
DOI:10.1145/3691620.3695371