QTAIM Atomic Charge and Polarization Parameters and Their Machine-Learning Transference among Boron-Halide Molecules
Atomic charges are invariant for out-of-plane distortions, making their molecular vibrations enticing for electronic structure studies. Of planar molecules, the boron trihalides contain some of the most polar bonds known to chemistry, although their out-of-plane bending intensities are very small co...
Gespeichert in:
| Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Jg. 124; H. 17; S. 3407 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
30.04.2020
|
| ISSN: | 1520-5215, 1520-5215 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Atomic charges are invariant for out-of-plane distortions, making their molecular vibrations enticing for electronic structure studies. Of planar molecules, the boron trihalides contain some of the most polar bonds known to chemistry, although their out-of-plane bending intensities are very small contrary to expectations from atomic charge models. Here, the out-of-plane infrared intensities of the BX
X
X
(X
, X
, X
= H, F, Cl, Br) molecules are investigated using quantum theory of atoms in molecules atomic charges and atomic dipoles within the formulism of the charge, charge transfer, dipolar polarization model at the QCISD/aug-cc-pVTZ quantum level. Dipole moments induced by equilibrium charge displacement of atoms perpendicular to the molecular plane are almost completely cancelled by their electronic density polarizations. The calculated boron trihalide intensities are small for molecules with such polar bonds ranging from 0.6 to 106.1 km mol
. Even though the Cl atomic charge of -0.72 e in BCl
is more negative than the hydrogen values of -0.67 e in BH
, the hydride out-of-plane intensity of 82.0 km mol
is an order of magnitude larger than that of the trichloride, 6.3 km mol
. Owing to their diverse electronic structures, transference of atomic charges and dipole parameters among the boron trihalides is extremely challenging and does not result in accurate intensity values. For this reason, a machine-learning decision-tree algorithm was used to perform the transference procedure. Decision trees were optimized using quantum-level intensity values. Atomic charge and dipole parameters were estimated for a set of 12 test set molecules. These parameters provided intensity estimates with a root-mean-square error of 2.1 km mol
compared with QCISD/aug-cc-pVTZ reference values. |
|---|---|
| AbstractList | Atomic charges are invariant for out-of-plane distortions, making their molecular vibrations enticing for electronic structure studies. Of planar molecules, the boron trihalides contain some of the most polar bonds known to chemistry, although their out-of-plane bending intensities are very small contrary to expectations from atomic charge models. Here, the out-of-plane infrared intensities of the BX(2)X(3)X(4) (X(2), X(3), X(4) = H, F, Cl, Br) molecules are investigated using quantum theory of atoms in molecules atomic charges and atomic dipoles within the formulism of the charge, charge transfer, dipolar polarization model at the QCISD/aug-cc-pVTZ quantum level. Dipole moments induced by equilibrium charge displacement of atoms perpendicular to the molecular plane are almost completely cancelled by their electronic density polarizations. The calculated boron trihalide intensities are small for molecules with such polar bonds ranging from 0.6 to 106.1 km mol-1. Even though the Cl atomic charge of -0.72 e in BCl3 is more negative than the hydrogen values of -0.67 e in BH3, the hydride out-of-plane intensity of 82.0 km mol-1 is an order of magnitude larger than that of the trichloride, 6.3 km mol-1. Owing to their diverse electronic structures, transference of atomic charges and dipole parameters among the boron trihalides is extremely challenging and does not result in accurate intensity values. For this reason, a machine-learning decision-tree algorithm was used to perform the transference procedure. Decision trees were optimized using quantum-level intensity values. Atomic charge and dipole parameters were estimated for a set of 12 test set molecules. These parameters provided intensity estimates with a root-mean-square error of 2.1 km mol-1 compared with QCISD/aug-cc-pVTZ reference values.Atomic charges are invariant for out-of-plane distortions, making their molecular vibrations enticing for electronic structure studies. Of planar molecules, the boron trihalides contain some of the most polar bonds known to chemistry, although their out-of-plane bending intensities are very small contrary to expectations from atomic charge models. Here, the out-of-plane infrared intensities of the BX(2)X(3)X(4) (X(2), X(3), X(4) = H, F, Cl, Br) molecules are investigated using quantum theory of atoms in molecules atomic charges and atomic dipoles within the formulism of the charge, charge transfer, dipolar polarization model at the QCISD/aug-cc-pVTZ quantum level. Dipole moments induced by equilibrium charge displacement of atoms perpendicular to the molecular plane are almost completely cancelled by their electronic density polarizations. The calculated boron trihalide intensities are small for molecules with such polar bonds ranging from 0.6 to 106.1 km mol-1. Even though the Cl atomic charge of -0.72 e in BCl3 is more negative than the hydrogen values of -0.67 e in BH3, the hydride out-of-plane intensity of 82.0 km mol-1 is an order of magnitude larger than that of the trichloride, 6.3 km mol-1. Owing to their diverse electronic structures, transference of atomic charges and dipole parameters among the boron trihalides is extremely challenging and does not result in accurate intensity values. For this reason, a machine-learning decision-tree algorithm was used to perform the transference procedure. Decision trees were optimized using quantum-level intensity values. Atomic charge and dipole parameters were estimated for a set of 12 test set molecules. These parameters provided intensity estimates with a root-mean-square error of 2.1 km mol-1 compared with QCISD/aug-cc-pVTZ reference values. Atomic charges are invariant for out-of-plane distortions, making their molecular vibrations enticing for electronic structure studies. Of planar molecules, the boron trihalides contain some of the most polar bonds known to chemistry, although their out-of-plane bending intensities are very small contrary to expectations from atomic charge models. Here, the out-of-plane infrared intensities of the BX X X (X , X , X = H, F, Cl, Br) molecules are investigated using quantum theory of atoms in molecules atomic charges and atomic dipoles within the formulism of the charge, charge transfer, dipolar polarization model at the QCISD/aug-cc-pVTZ quantum level. Dipole moments induced by equilibrium charge displacement of atoms perpendicular to the molecular plane are almost completely cancelled by their electronic density polarizations. The calculated boron trihalide intensities are small for molecules with such polar bonds ranging from 0.6 to 106.1 km mol . Even though the Cl atomic charge of -0.72 e in BCl is more negative than the hydrogen values of -0.67 e in BH , the hydride out-of-plane intensity of 82.0 km mol is an order of magnitude larger than that of the trichloride, 6.3 km mol . Owing to their diverse electronic structures, transference of atomic charges and dipole parameters among the boron trihalides is extremely challenging and does not result in accurate intensity values. For this reason, a machine-learning decision-tree algorithm was used to perform the transference procedure. Decision trees were optimized using quantum-level intensity values. Atomic charge and dipole parameters were estimated for a set of 12 test set molecules. These parameters provided intensity estimates with a root-mean-square error of 2.1 km mol compared with QCISD/aug-cc-pVTZ reference values. |
| Author | Duarte, Leonardo J Bruns, Roy E |
| Author_xml | – sequence: 1 givenname: Leonardo J surname: Duarte fullname: Duarte, Leonardo J organization: Instituto de Química, Universidade Estadual de Campinas, CP 6154, Campinas, São Paulo 13083-970, Brazil – sequence: 2 givenname: Roy E orcidid: 0000-0002-8234-1129 surname: Bruns fullname: Bruns, Roy E organization: Instituto de Química, Universidade Estadual de Campinas, CP 6154, Campinas, São Paulo 13083-970, Brazil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32250118$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkL1PwzAQxS1URD9gZ0IeWVJsx26TsVRAK7WiSGGuLs6ldZXYxU4G-OtJoUhM93Tvd096NyQ96ywScsvZmDPBH0CH8eGoYcw04zyJL8iAK8EiJbjq_dN9MgzhwBjjsZBXpB8LoU4HA9K8ZbPlms4aVxtN53vwO6RgC7pxFXjzBY1xlm7AQ40N-vDjZXs0nq5B743FaIXgrbE7mnmwoUSPVncZtetWj847Gy2gMgXStatQtxWGa3JZQhXw5jxH5P35KZsvotXry3I-W0UgkrSJdM4RmCzSshQpSmCQg4BpIaeKg5qkeZwnCpNYF0IVXdU416Ls6kqWJlyBECNy_5t79O6jxdBsaxM0VhVYdG3YijiZSMmEPKF3Z7TNayy2R29q8J_bv0-Jb9Kcbg0 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/acs.jpca.0c01183 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-5215 |
| ExternalDocumentID | 32250118 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .DC .K2 123 29L 4.4 53G 55A 5VS 7~N 85S AABXI ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ NPM PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ~02 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a289t-cb1ea04d9ff29e4a0aba2a7d4751a569b3b85e83cd25d5203bc2f521409815a22 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529880400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-5215 |
| IngestDate | Fri Jul 11 16:02:24 EDT 2025 Thu Jan 02 22:59:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a289t-cb1ea04d9ff29e4a0aba2a7d4751a569b3b85e83cd25d5203bc2f521409815a22 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8234-1129 |
| PMID | 32250118 |
| PQID | 2386440242 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2386440242 pubmed_primary_32250118 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Apr-30 20200430 |
| PublicationDateYYYYMMDD | 2020-04-30 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-Apr-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
| PublicationTitleAlternate | J Phys Chem A |
| PublicationYear | 2020 |
| SSID | ssj0001324 |
| Score | 2.3452435 |
| Snippet | Atomic charges are invariant for out-of-plane distortions, making their molecular vibrations enticing for electronic structure studies. Of planar molecules,... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 3407 |
| Title | QTAIM Atomic Charge and Polarization Parameters and Their Machine-Learning Transference among Boron-Halide Molecules |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32250118 https://www.proquest.com/docview/2386440242 |
| Volume | 124 |
| WOSCitedRecordID | wos000529880400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xfpk3IviarU2bXp5kDscEOyZM2Ns4TdKhD9201d9vTpqxJ0HwpS-hUE7S850v5_IRcpeHRSITHTAP0oKFMgmYYbaK8cQTSkAuNVjVkud4NEqm03TsLtwqV1a58onWUauFxDvyroEWA92IKPfLD4aqUZhddRIam6QVmFAGS7ri6XpauGFaNqssDEUyMCVcmtLAWhdk1XlfSuh4Ensvg98DTAs0g_3_fuIB2XMhJu01Z-KQbOjyiOz0V8pux6R-mfSeMtqrsSOZYsJ9rimUio6R57rGTDoGrNvC4Zt2bYIZBZrZ2kvN3FjWObVY53oGqVUuog84FIENTYCvNM0a-V1dnZDXweOkP2ROfYGBIWE1k7mvwQtVWhQ81SF4kAOHWIWx8EFEaR7kidBJIBU3u8q9IJe8MFY2hDHxBXB-SrbKRanPCU1z8OMYcF2GfhylooBAaFVEYRSmkW6T25VBZ8YUmLKAUi--qtnapG1y1uzKbNmM4ZihK8K9u_jD25dklyNRtmmgK9IqzL-tr8m2_K7fqs8be2zMczTOfgCRfc5A |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QTAIM+Atomic+Charge+and+Polarization+Parameters+and+Their+Machine-Learning+Transference+among+Boron-Halide+Molecules&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Duarte%2C+Leonardo+J&rft.au=Bruns%2C+Roy+E&rft.date=2020-04-30&rft.issn=1520-5215&rft.eissn=1520-5215&rft.volume=124&rft.issue=17&rft.spage=3407&rft_id=info:doi/10.1021%2Facs.jpca.0c01183&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5215&client=summon |