Compositional Semantics for Probabilistic Programs with Exact Conditioning

We define a probabilistic programming language for Gaussian random variables with a first-class exact conditioning construct. We give operational, denotational and equational semantics for this language, establishing convenient properties like exchangeability of conditions. Conditioning on equality...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13
Hlavní autori: Stein, Dario, Staton, Sam
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 29.06.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We define a probabilistic programming language for Gaussian random variables with a first-class exact conditioning construct. We give operational, denotational and equational semantics for this language, establishing convenient properties like exchangeability of conditions. Conditioning on equality of continuous random variables is nontrivial, as the exact observation may have probability zero; this is Borel's paradox. Using categorical formulations of conditional probability, we show that the good properties of our language are not particular to Gaussians, but can be derived from universal properties, thus generalizing to wider settings. We define the Cond construction, which internalizes conditioning as a morphism, providing general compositional semantics for probabilistic programming with exact conditioning.
DOI:10.1109/LICS52264.2021.9470552