Expressivity of Quantitative Modal Logics : Categorical Foundations via Codensity and Approximation
A modal logic that is strong enough to fully characterize the behavior of a system is called expressive. Recently, with the growing diversity of systems to be reasoned about (probabilistic, cyber-physical, etc.), the focus shifted to quantitative settings which resulted in a number of expressivity r...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science S. 1 - 14 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
29.06.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A modal logic that is strong enough to fully characterize the behavior of a system is called expressive. Recently, with the growing diversity of systems to be reasoned about (probabilistic, cyber-physical, etc.), the focus shifted to quantitative settings which resulted in a number of expressivity results for quantitative logics and behavioral metrics. Each of these quantitative expressivity results uses a tailor-made argument; distilling the essence of these arguments is non-trivial, yet important to support the design of expressive modal logics for new quantitative settings. In this paper, we present the first categorical framework for deriving quantitative expressivity results, based on the new notion of approximating family. A key ingredient is the codensity lifting-a uniform observation-centric construction of various bisimilarity-like notions such as bisimulation metrics. We show that several recent quantitative expressivity results (e.g. by König et al. and by Fijalkow et al.) are accommodated in our framework; a new expressivity result is derived, too, for what we call bisimulation uniformity. |
|---|---|
| AbstractList | A modal logic that is strong enough to fully characterize the behavior of a system is called expressive. Recently, with the growing diversity of systems to be reasoned about (probabilistic, cyber-physical, etc.), the focus shifted to quantitative settings which resulted in a number of expressivity results for quantitative logics and behavioral metrics. Each of these quantitative expressivity results uses a tailor-made argument; distilling the essence of these arguments is non-trivial, yet important to support the design of expressive modal logics for new quantitative settings. In this paper, we present the first categorical framework for deriving quantitative expressivity results, based on the new notion of approximating family. A key ingredient is the codensity lifting-a uniform observation-centric construction of various bisimilarity-like notions such as bisimulation metrics. We show that several recent quantitative expressivity results (e.g. by König et al. and by Fijalkow et al.) are accommodated in our framework; a new expressivity result is derived, too, for what we call bisimulation uniformity. |
| Author | Katsumata, Shin-ya Kupke, Clemens Hasuo, Ichiro Komorida, Yuichi Rot, Jurriaan |
| Author_xml | – sequence: 1 givenname: Yuichi surname: Komorida fullname: Komorida, Yuichi organization: The Graduate University for Advanced Studies,SOKENDAI,Hayama,Japan – sequence: 2 givenname: Shin-ya surname: Katsumata fullname: Katsumata, Shin-ya organization: National Institute of Informatics,Tokyo,Japan – sequence: 3 givenname: Clemens surname: Kupke fullname: Kupke, Clemens organization: University of Strathclyde,United Kingdom – sequence: 4 givenname: Jurriaan surname: Rot fullname: Rot, Jurriaan organization: Radboud University,Nijmegen,The Netherlands – sequence: 5 givenname: Ichiro surname: Hasuo fullname: Hasuo, Ichiro organization: The Graduate University for Advanced Studies,SOKENDAI,Hayama,Japan |
| BookMark | eNotkNtKAzEYhCMoqLVPIEheoPVPNkfvylK1sCKiXpectkRqsmy2pX17V-3VwPAxw8w1Ok85BYTuCMwJAX3frOp3TqlgcwqUzDWTILg4Q1MtFRGCM6Y0F5doWsoXAFAlCTB9hdzy0PWhlLiPwxHnFr_tTBriYIa4D_gle7PFTd5EV_ADrs0QNrmPbjQf8y75kcqp4H00uM4-pPIbYpLHi67r8yF-_wE36KI12xKmJ52gz8flR_08a16fVvWimRmq9DCz0oPxhgnuqIfKaw625VIqYYNR3lrjnFDQAiOcjYzW1ozrwDpXKdmaaoJu_3NjCGHd9WN9f1yfrqh-AABFWUo |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/LICS52264.2021.9470656 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781665448956 1665448954 |
| EndPage | 14 |
| ExternalDocumentID | 9470656 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIO |
| ID | FETCH-LOGICAL-a289t-b7d0ada465c2d03d950bf57786bea8dbbacc680f041545c299ba9780bcc387fa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:26:37 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a289t-b7d0ada465c2d03d950bf57786bea8dbbacc680f041545c299ba9780bcc387fa3 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_9470656 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-June-29 |
| PublicationDateYYYYMMDD | 2021-06-29 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-June-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science |
| PublicationTitleAbbrev | LICS |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002871049 |
| Score | 2.3004076 |
| Snippet | A modal logic that is strong enough to fully characterize the behavior of a system is called expressive. Recently, with the growing diversity of systems to be... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Computer science Measurement Probabilistic logic |
| Title | Expressivity of Quantitative Modal Logics : Categorical Foundations via Codensity and Approximation |
| URI | https://ieeexplore.ieee.org/document/9470656 |
| WOSCitedRecordID | wos000947350400059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3a4sFT1Vb8Zg8eTbtJNpvEm4QWBS0VFXor-wkFSaRNS3--O0lsEbx4W8JuAjtsZnZm3nsAt3Fi3K2LSyz9Bx7znS2cE7ReYE1kNWeKc1WJTcSTSTKbpdMW3O2wMMaYqvnMDHBY1fJ1odaYKhumDItyvA3tOOY1VmuXT8HI30W7DQjYp-nw-Sl7w-gCMyeBP2gW_1JRqZzIuPu_zx9Bf4_GI9OdnzmGlslPoPsjx0Ca09kDNdrWXa0oB0EKS17XIq8wZO6PRl4KLT4JSiurFbknGTJE1PwgZC-ttCKbhSBZobGt3b1E5Jo8IOv4dlFDHPvwMR69Z49eo6HgCXeVKj0Zayq0YDxSgaahTiMqbYSkcdKIREsplOIJtYjUZ25OmkqBpERSqTCJrQhPoZMXuTkDInQQORMmTLughdFQxsIoPzGGUqWMZufQwz2bf9U0GfNmuy7-fnwJh2gW7LoK0ivolMu1uYYDtSkXq-VNZdtvWGmnpw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFfRUtRXf7sGjaTfJ5uVNQkuLbalYobeyr0BAEumL_nx3ktgiePG2hN0QdtjM7Mx83wfwGITa3Lp8gaV_x2K2sYVxgonlJNpLlM-k78tCbCIYj8PZLJrU4GmHhdFaF81nuo3DopavcrnGVFknYliU8w_gEJWzKrTWLqOCsb-JdysYsE2jznAQv2N8gbkTx25Xy3_pqBRupNf43wecQmuPxyOTnac5g5rOzqHxI8hAqvPZBNndln2tKAhB8oS8rXlWoMjMP42McsU_CYoryyV5JjFyRJQMIWQvrrQkm5STOFfY2G5ewjNFXpB3fJuWIMcWfPS607hvVSoKFjeXqZUlAkW54sz3pKOoqyKPisRD2jiheaiE4FL6IU0Qq8_MnCgSHGmJhJRuGCTcvYB6lmf6EghXjmeMGDJlwhZGXRFwLe1Qa0ql1IpdQRP3bP5VEmXMq-26_vvxAxz3p6PhfDgYv97ACZoIe7Cc6Bbqq8Va38GR3KzS5eK-sPM3Pnmq8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Expressivity+of+Quantitative+Modal+Logics+%3A+Categorical+Foundations+via+Codensity+and+Approximation&rft.au=Komorida%2C+Yuichi&rft.au=Katsumata%2C+Shin-ya&rft.au=Kupke%2C+Clemens&rft.au=Rot%2C+Jurriaan&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FLICS52264.2021.9470656&rft.externalDocID=9470656 |