Parametricity and Semi-Cubical Types

We construct a model of type theory enjoying parametricity from an arbitrary one. A type in the new model is a semi-cubical type in the old one, illustrating the correspondence between parametricity and cubes.Our construction works not only for parametricity, but also for similar interpretations of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 11
Hlavní autor: Moeneclaey, Hugo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We construct a model of type theory enjoying parametricity from an arbitrary one. A type in the new model is a semi-cubical type in the old one, illustrating the correspondence between parametricity and cubes.Our construction works not only for parametricity, but also for similar interpretations of type theory and in fact similar interpretations of any generalized algebraic theory. To be precise we consider a functor forgetting unary operations and equations defining them recursively in a generalized algebraic theory. We show that it has a right adjoint.We use techniques from locally presentable category theory, as well as from quotient inductive-inductive types.
DOI:10.1109/LICS52264.2021.9470728