Neurally-Inspired Hyperdimensional Classification for Efficient and Robust Biosignal Processing

The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process by existing machine learning algorithms. Hyper-Dimensional Computing (HDC) is introduced as a brain-inspired paradigm for lightweight time se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) S. 1 - 9
Hauptverfasser: Ni, Yang, Lesica, Nicholas, Zeng, Fan-Gang, Imani, Mohsen
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: ACM 29.10.2022
Schlagworte:
ISSN:1558-2434
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process by existing machine learning algorithms. Hyper-Dimensional Computing (HDC) is introduced as a brain-inspired paradigm for lightweight time series classification. However, there are the following drawbacks with existing HDC algorithms: (1) low classification accuracy that comes from linear hyperdimensional representation, (2) lack of real-time learning support due to costly and non-hardware friendly operations, and (3) unable to build up a strong model from partially labeled data.In this paper, we propose TempHD, a novel hyperdimensional computing method for efficient and accurate biosignal classification. We first develop a novel non-linear hyperdimensional encoding that maps data points into high-dimensional space. Unlike existing HDC solutions that use costly mathematics for encoding, TempHD preserves spatial-temporal information of data in original space before mapping data into high-dimensional space. To obtain the most informative representation, our encoding method considers the non-linear interactions between both spatial sensors and temporally sampled data. Our evaluation shows that TempHD provides higher classification accuracy, significantly higher computation efficiency, and, more importantly, the capability to learn from partially labeled data. We evaluate TempHD effectiveness on noisy EEG data used for a brain-machine interface. Our results show that TempHD achieves, on average, 2.3% higher classification accuracy as well as 7.7× and 21.8× speedup for training and testing time compared to state-of-the-art HDC algorithms, respectively.
AbstractList The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process by existing machine learning algorithms. Hyper-Dimensional Computing (HDC) is introduced as a brain-inspired paradigm for lightweight time series classification. However, there are the following drawbacks with existing HDC algorithms: (1) low classification accuracy that comes from linear hyperdimensional representation, (2) lack of real-time learning support due to costly and non-hardware friendly operations, and (3) unable to build up a strong model from partially labeled data.In this paper, we propose TempHD, a novel hyperdimensional computing method for efficient and accurate biosignal classification. We first develop a novel non-linear hyperdimensional encoding that maps data points into high-dimensional space. Unlike existing HDC solutions that use costly mathematics for encoding, TempHD preserves spatial-temporal information of data in original space before mapping data into high-dimensional space. To obtain the most informative representation, our encoding method considers the non-linear interactions between both spatial sensors and temporally sampled data. Our evaluation shows that TempHD provides higher classification accuracy, significantly higher computation efficiency, and, more importantly, the capability to learn from partially labeled data. We evaluate TempHD effectiveness on noisy EEG data used for a brain-machine interface. Our results show that TempHD achieves, on average, 2.3% higher classification accuracy as well as 7.7× and 21.8× speedup for training and testing time compared to state-of-the-art HDC algorithms, respectively.
Author Ni, Yang
Zeng, Fan-Gang
Lesica, Nicholas
Imani, Mohsen
Author_xml – sequence: 1
  givenname: Yang
  surname: Ni
  fullname: Ni, Yang
  organization: University of California Irvine
– sequence: 2
  givenname: Nicholas
  surname: Lesica
  fullname: Lesica, Nicholas
  organization: University College London
– sequence: 3
  givenname: Fan-Gang
  surname: Zeng
  fullname: Zeng, Fan-Gang
  organization: University of California Irvine
– sequence: 4
  givenname: Mohsen
  surname: Imani
  fullname: Imani, Mohsen
  email: m.imani@uci.edu
  organization: University of California Irvine
BookMark eNotjMtOwzAURA0CiVKyZsPCP5DiZ-wsoWpppQoQ6r66ia8ro9SJ7HTRvycIVqOZozP35Cb2EQl55GzBudLPUjMrtVhIrWplzBUpamMnwGQtuFHXZMa1tqVQUt2RIudvxpiwhhvDZuTwjucEXXcptzEPIaGjm8uAyYUTxhz6CB1ddpBz8KGFcRqo7xNd-akGjCOF6OhX35zzSF9Dn8Px1_hMfYuTE48P5NZDl7H4zznZr1f75abcfbxtly-7EoStxxIUNJ5JxWRlawWoEUB4x-rWQQOVqVrTtlgJKwR4h7YBKZT1ljuluanknDz93QZEPAwpnCBdDpyxytoJ_wDwfFgr
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3508352.3549477
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781450392174
1450392172
EISSN 1558-2434
EndPage 9
ExternalDocumentID 10068876
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a289t-a4abf034036894ae5eaa2fd09cdaba676c7cce62822afde8ba3248f81d451763
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981574300033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:46:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-a4abf034036894ae5eaa2fd09cdaba676c7cce62822afde8ba3248f81d451763
OpenAccessLink https://dl.acm.org/doi/pdf/10.1145/3508352.3549477
PageCount 9
ParticipantIDs ieee_primary_10068876
PublicationCentury 2000
PublicationDate 2022-Oct.-29
PublicationDateYYYYMMDD 2022-10-29
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)
PublicationTitleAbbrev ICCAD
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002871770
ssj0020286
Score 2.3580527
Snippet The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational efficiency
Encoding
Machine learning algorithms
Real-time systems
Sensors
Time series analysis
Training
Title Neurally-Inspired Hyperdimensional Classification for Efficient and Robust Biosignal Processing
URI https://ieeexplore.ieee.org/document/10068876
WOSCitedRecordID wos000981574300033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxQALX0V8ywNrSpvYcbKCWpWlqlCHbtXZvkiVSoLaFIl_z50bCgwMbJYly5F9zr2z790T4t66goAoKjJeqyOlrY8ADFLUmmZFriHxVgWxCTMeZ7NZPmnI6oELg4gh-Qy73Axv-b5yG74qoxPOEikmbYmWMWZL1tpdqDD0N2x8TbRFHWlTy6ev9EOiA9joJhQQKfNbTCX4kuHRP7_iWHS-WXlysvM3J2IPy1Nx-KOg4JmYc60NWC4_oueSn9DRyxEFmmQEr5yozqhbBhlMThAKeyIJtMpBqCNBs0oovXyp7GZdy8dFxckdNKIhE9AMHTEdDqZPo6iRUIiAIqk6AgW26CWK_FSWK0CNAHHhe7nzYCE1qTPOYcq5pFB4zCwQwMoKArFK9-nXcy7aZVXihZAm1p6wXmy1IwilC7CJprMd5-AsZgleig4v1fxtWyRj_rVKV3_0X4uDmJkE5Abi_Ea069UGb8W-e68X69Vd2NpPISymcQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIAELX0V844E1pU3sOFlBrVpRqgp16Bad7YtUCRLUpkj8e85uKDAwsFmWLEf2OffOvnePsVttcgKiKMh4tQyE1DYAUEhRa5zkqYTIauHFJtRolEyn6bgmq3suDCL65DNsuaZ_y7elWbqrMjrhTiJFxZtsSwoRdlZ0rfWVigP_yplfHW9RR1xX8-kIeRdJDzdaEYVEQv2WU_HepLf_z-84YM1vXh4frz3OIdvA4ojt_SgpeMwyV20DXl4-gkHhHtHR8j6FmmQGry5V3eFu7oUwXYqQ3xVOsJV3fSUJmpVDYflzqZeLit_PSpfeQSNqOgHN0GSTXnfy0A9qEYUAKJaqAhCg83YkyFMlqQCUCBDmtp0aCxpiFRtlDMYumxRyi4kGglhJTjBWyA79fE5YoygLPGVchdIS2gu1NASiZA46knS6wxSMxiTCM9Z0S5W9rcpkZF-rdP5H_w3b6U-ehtlwMHq8YLuh4xWQUwjTS9ao5ku8YtvmvZot5td-mz8B9qOpuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+On+Computer+Aided+Design+%28ICCAD%29&rft.atitle=Neurally-Inspired+Hyperdimensional+Classification+for+Efficient+and+Robust+Biosignal+Processing&rft.au=Ni%2C+Yang&rft.au=Lesica%2C+Nicholas&rft.au=Zeng%2C+Fan-Gang&rft.au=Imani%2C+Mohsen&rft.date=2022-10-29&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3508352.3549477&rft.externalDocID=10068876