Normalization for Cubical Type Theory
We prove normalization for (univalent, Cartesian) cubical type theory, closing the last major open problem in the syntactic metatheory of cubical type theory. Our normalization result is reduction-free, in the sense of yielding a bijection between equivalence classes of terms in context and a tracta...
Uloženo v:
| Vydáno v: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 15 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
29.06.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove normalization for (univalent, Cartesian) cubical type theory, closing the last major open problem in the syntactic metatheory of cubical type theory. Our normalization result is reduction-free, in the sense of yielding a bijection between equivalence classes of terms in context and a tractable language of β/η-normal forms. As corollaries we obtain both decidability of judgmental equality and the injectivity of type constructors. |
|---|---|
| DOI: | 10.1109/LICS52264.2021.9470719 |