Lovász-Type Theorems and Game Comonads

Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms from C to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this fact. We...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 1 - 13
Main Authors: Dawar, Anuj, Jakl, Tomas, Reggio, Luca
Format: Conference Proceeding
Language:English
Published: IEEE 29.06.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms from C to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this fact. We propose a new categorical formulation, which applies to any locally finite category with pushouts and a proper factorisation system. As special cases of this general theorem, we obtain two variants of Lovász' theorem: the result by Dvořák (2010) that characterises equivalence of graphs in the k-dimensional Weisfeiler-Leman equivalence by homomorphism counts from graphs of tree-width at most k, and the result of Grohe (2020) characterising equivalence with respect to first-order logic with counting and quantifier depth k in terms of homomorphism counts from graphs of tree-depth at most k. The connection of our categorical formulation with these results is obtained by means of the game comonads of Abramsky et al. We also present a novel application to homomorphism counts in modal logic.
AbstractList Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms from C to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this fact. We propose a new categorical formulation, which applies to any locally finite category with pushouts and a proper factorisation system. As special cases of this general theorem, we obtain two variants of Lovász' theorem: the result by Dvořák (2010) that characterises equivalence of graphs in the k-dimensional Weisfeiler-Leman equivalence by homomorphism counts from graphs of tree-width at most k, and the result of Grohe (2020) characterising equivalence with respect to first-order logic with counting and quantifier depth k in terms of homomorphism counts from graphs of tree-depth at most k. The connection of our categorical formulation with these results is obtained by means of the game comonads of Abramsky et al. We also present a novel application to homomorphism counts in modal logic.
Author Jakl, Tomas
Reggio, Luca
Dawar, Anuj
Author_xml – sequence: 1
  givenname: Anuj
  surname: Dawar
  fullname: Dawar, Anuj
  email: anuj.dawar@cl.cam.ac.uk
  organization: University of Cambridge,Department of Computer Science and Technology,UK
– sequence: 2
  givenname: Tomas
  surname: Jakl
  fullname: Jakl, Tomas
  email: tj330@cam.ac.uk
  organization: University of Cambridge,Department of Computer Science and Technology,UK
– sequence: 3
  givenname: Luca
  surname: Reggio
  fullname: Reggio, Luca
  email: luca.reggio@cs.ox.ac.uk
  organization: University of Oxford,Department of Computer Science,UK
BookMark eNotj8FKxDAURSMoqGO_QJDuXLW-JC9pspSi40DBxXTWw0uT4IhthkaE8W_8Fn_MAWd1z-pw7jU7n9IUGLvjUHMO9qFbtWslhMZagOC1xQY02DNW2MZwrRWisUpfsiLndwAQpuGA9ordd-nr9yd_V_1hH8r-LaQ5jLmkyZdLGkPZpjFN5PMNu4j0kUNx2gXbPD_17UvVvS5X7WNXkTD2s7LSoZGeBokapA-ORPSDs8oNeKTouHQN8aiV9jEakl4QmWMKDUIioFyw23_vLoSw3c-7kebD9nRH_gGymULz
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470609
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470609
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-93b483dac34603deba2fdcb95bc42fdfb13b7a1f656dff8a3d2aa8104ac234043
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-93b483dac34603deba2fdcb95bc42fdfb13b7a1f656dff8a3d2aa8104ac234043
PageCount 13
ParticipantIDs ieee_primary_9470609
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.4095514
Snippet Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Computer science
Forestry
Games
Semantics
Title Lovász-Type Theorems and Game Comonads
URI https://ieeexplore.ieee.org/document/9470609
WOSCitedRecordID wos000947350400042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL20RcRVta34JgvBjWknk3Rmsi5WhVIKKnRX8rgBF51Kp-3Cv_Fb_DGT6VgR3LgLQzJDbgg5907OOQDXjveZUn1Bg-wkFTyyVMtEUCnRpBrjSNtSMn-UjsfZdConNbjdcWEQsbx8ht3QLP_l24VZh1JZT4qg9SLrUE_TZMvV2tVTAvL3aLciAbNI9kaPg6eALkLlJGbdavAvF5XyEBk2__f5Q-j8sPHIZHfOHEEN8xY0v-0YSLU7W7AfbDaDd1sbbkaLzedH8U5DmklK_j3OC6JyS-7VHIkf7BG4LTrwMrx7HjzQyhKBKp8ZrajkWmTcKsNFEnGLWsXOGi372gjfcppxnSrmPEqzzmWK21ipzAdGmZgHIZ1jaOSLHE-AMGalkMpEyFMh_Ku40T538j2dFaiSU2iHEMzetqoXs2r2Z38_PoeDEOVwiSqWF9BYLdd4CXtms3otllflUn0Bs4OU-g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFL1BNOoTChi_3YOJLxbWtbD1mYgQJyERE95Iv5bwwDAMePDf-Fv8Y_aOiTHxxbdmaZf1Nk3Pves5B-A2YS0qZYsTlJ0knPmGKNHmRAirQ2UDX5lcMj8OB4NoPBbDEtxvuTDW2vzymW1gM_-Xb-Z6haWypuCo9SJ2YBeds_wNW2tbUUHs7_BuQQOmvmjG_c4L4gusnQS0UQz_5aOSHyPdyv8-4AjqP3w8b7g9aY6hZNMqVL4NGbxif1ZhH4020b2tBnfxfP35kb0TTDS9nIFvZ5knU-M9ypn13GCHwU1Wh9fuw6jTI4UpApEuN1oSwRSPmJGa8bbPjFUySIxWoqU0d61EUaZCSROH00ySRJKZQMrIBUbqgKGUzgmU03lqT8Gj1AgupPYtCzl3r2JauezJ9UwMt7J9BjUMweRto3sxKWZ__vfjGzjojZ7jSdwfPF3AIUYcr1QF4hLKy8XKXsGeXi-n2eI6X7Yvom2YQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Lov%C3%A1sz-Type+Theorems+and+Game+Comonads&rft.au=Dawar%2C+Anuj&rft.au=Jakl%2C+Tomas&rft.au=Reggio%2C+Luca&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470609&rft.externalDocID=9470609