Lovász-Type Theorems and Game Comonads

Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms from C to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this fact. We...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13
Hlavní autoři: Dawar, Anuj, Jakl, Tomas, Reggio, Luca
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms from C to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this fact. We propose a new categorical formulation, which applies to any locally finite category with pushouts and a proper factorisation system. As special cases of this general theorem, we obtain two variants of Lovász' theorem: the result by Dvořák (2010) that characterises equivalence of graphs in the k-dimensional Weisfeiler-Leman equivalence by homomorphism counts from graphs of tree-width at most k, and the result of Grohe (2020) characterising equivalence with respect to first-order logic with counting and quantifier depth k in terms of homomorphism counts from graphs of tree-depth at most k. The connection of our categorical formulation with these results is obtained by means of the game comonads of Abramsky et al. We also present a novel application to homomorphism counts in modal logic.
AbstractList Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms from C to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this fact. We propose a new categorical formulation, which applies to any locally finite category with pushouts and a proper factorisation system. As special cases of this general theorem, we obtain two variants of Lovász' theorem: the result by Dvořák (2010) that characterises equivalence of graphs in the k-dimensional Weisfeiler-Leman equivalence by homomorphism counts from graphs of tree-width at most k, and the result of Grohe (2020) characterising equivalence with respect to first-order logic with counting and quantifier depth k in terms of homomorphism counts from graphs of tree-depth at most k. The connection of our categorical formulation with these results is obtained by means of the game comonads of Abramsky et al. We also present a novel application to homomorphism counts in modal logic.
Author Jakl, Tomas
Reggio, Luca
Dawar, Anuj
Author_xml – sequence: 1
  givenname: Anuj
  surname: Dawar
  fullname: Dawar, Anuj
  email: anuj.dawar@cl.cam.ac.uk
  organization: University of Cambridge,Department of Computer Science and Technology,UK
– sequence: 2
  givenname: Tomas
  surname: Jakl
  fullname: Jakl, Tomas
  email: tj330@cam.ac.uk
  organization: University of Cambridge,Department of Computer Science and Technology,UK
– sequence: 3
  givenname: Luca
  surname: Reggio
  fullname: Reggio, Luca
  email: luca.reggio@cs.ox.ac.uk
  organization: University of Oxford,Department of Computer Science,UK
BookMark eNotj8FKxDAURSMoqGO_QJDuXLW-JC9pspSi40DBxXTWw0uT4IhthkaE8W_8Fn_MAWd1z-pw7jU7n9IUGLvjUHMO9qFbtWslhMZagOC1xQY02DNW2MZwrRWisUpfsiLndwAQpuGA9ordd-nr9yd_V_1hH8r-LaQ5jLmkyZdLGkPZpjFN5PMNu4j0kUNx2gXbPD_17UvVvS5X7WNXkTD2s7LSoZGeBokapA-ORPSDs8oNeKTouHQN8aiV9jEakl4QmWMKDUIioFyw23_vLoSw3c-7kebD9nRH_gGymULz
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470609
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470609
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-93b483dac34603deba2fdcb95bc42fdfb13b7a1f656dff8a3d2aa8104ac234043
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-93b483dac34603deba2fdcb95bc42fdfb13b7a1f656dff8a3d2aa8104ac234043
PageCount 13
ParticipantIDs ieee_primary_9470609
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.4066427
Snippet Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Computer science
Forestry
Games
Semantics
Title Lovász-Type Theorems and Game Comonads
URI https://ieeexplore.ieee.org/document/9470609
WOSCitedRecordID wos000947350400042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3aIuKp2lb8JgfBi9smu5uvc7EqlFJQobcyyc6Ch7bStD34b_wt_jF30lgRvHhbAsOSCct7M9k3D-DaJ5k5Fm-FQ_NEaBlHAjH0BYUOLFElhuTWbCIejZLJJB3X4HanhSGi8vIZdXlZ_ss3i3zNrbJeqnnWS1qHehzHW63Wrp_CzN-x3UoEHPhpb_jYf2J2wZ0TGXSr4F8uKiWIDJr_2_4QOj9qPG-8w5kjqNG8Bc1vOwavOp0t2GebTfZua8PNcLH5_CjeBZeZXqm_p1nh4dx49zgjzwU7Bm6KDrwM7p77D6KyRBDoKqOVSFWmE2UwVzrylaEMpTV5loZZrt3KZoHKYgysY2nG2gSVkYiJSwzmUvEgnWNozBdzOgFPk4tybCEkHekIDSZMPSKjiGHd2lNocwqmb9upF9Pq7c_-fnwOB5xlvkQl0wtorJZruoS9fLN6LZZX5af6Attuk9Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qFfVUbSt-m4PgxW2T3U2anIvaYiwFK_RWJtlZ8NBUmrYH_42_xT_mbhorghdvS2BgM2F5byb75gFcu8QTw-I1M2geMsk7AUP0XUa-AUsUoSK-NpvoDAbheBwNK3C70cIQUXH5jFp2WfzLV7N0aVtl7UjaWS_RFmz7UnJvrdbadFQs9zd8t5QBe27UjvvdZ8svbO-Ee60y_JePSgEj97X_beAAmj96PGe4QZpDqFBWh9q3IYNTns867FqjTeve1oCbeLb6_MjfmS00nUKBT9PcwUw5DzglxwQbDq7yJrzc3426PVaaIjA0tdGCRSKRoVCYChm4QlGCXKs0ifwklWalE08kHfS04WlK6xCF4oihSQymXNhROkdQzWYZHYMjyUQZvuCTDGSACkNLPgIlyAK71ifQsCmYvK3nXkzKtz_9-_EV7PVGT_Ek7g8ez2DfZtxeqeLROVQX8yVdwE66Wrzm88vis30BvcOXGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Lov%C3%A1sz-Type+Theorems+and+Game+Comonads&rft.au=Dawar%2C+Anuj&rft.au=Jakl%2C+Tomas&rft.au=Reggio%2C+Luca&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470609&rft.externalDocID=9470609