Lovász-Type Theorems and Game Comonads
Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms from C to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this fact. We...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science S. 1 - 13 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
29.06.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms from C to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this fact. We propose a new categorical formulation, which applies to any locally finite category with pushouts and a proper factorisation system. As special cases of this general theorem, we obtain two variants of Lovász' theorem: the result by Dvořák (2010) that characterises equivalence of graphs in the k-dimensional Weisfeiler-Leman equivalence by homomorphism counts from graphs of tree-width at most k, and the result of Grohe (2020) characterising equivalence with respect to first-order logic with counting and quantifier depth k in terms of homomorphism counts from graphs of tree-depth at most k. The connection of our categorical formulation with these results is obtained by means of the game comonads of Abramsky et al. We also present a novel application to homomorphism counts in modal logic. |
|---|---|
| AbstractList | Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms from C to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this fact. We propose a new categorical formulation, which applies to any locally finite category with pushouts and a proper factorisation system. As special cases of this general theorem, we obtain two variants of Lovász' theorem: the result by Dvořák (2010) that characterises equivalence of graphs in the k-dimensional Weisfeiler-Leman equivalence by homomorphism counts from graphs of tree-width at most k, and the result of Grohe (2020) characterising equivalence with respect to first-order logic with counting and quantifier depth k in terms of homomorphism counts from graphs of tree-depth at most k. The connection of our categorical formulation with these results is obtained by means of the game comonads of Abramsky et al. We also present a novel application to homomorphism counts in modal logic. |
| Author | Jakl, Tomas Reggio, Luca Dawar, Anuj |
| Author_xml | – sequence: 1 givenname: Anuj surname: Dawar fullname: Dawar, Anuj email: anuj.dawar@cl.cam.ac.uk organization: University of Cambridge,Department of Computer Science and Technology,UK – sequence: 2 givenname: Tomas surname: Jakl fullname: Jakl, Tomas email: tj330@cam.ac.uk organization: University of Cambridge,Department of Computer Science and Technology,UK – sequence: 3 givenname: Luca surname: Reggio fullname: Reggio, Luca email: luca.reggio@cs.ox.ac.uk organization: University of Oxford,Department of Computer Science,UK |
| BookMark | eNotj8FKxDAURSMoqGO_QJDuXLW-JC9pspSi40DBxXTWw0uT4IhthkaE8W_8Fn_MAWd1z-pw7jU7n9IUGLvjUHMO9qFbtWslhMZagOC1xQY02DNW2MZwrRWisUpfsiLndwAQpuGA9ordd-nr9yd_V_1hH8r-LaQ5jLmkyZdLGkPZpjFN5PMNu4j0kUNx2gXbPD_17UvVvS5X7WNXkTD2s7LSoZGeBokapA-ORPSDs8oNeKTouHQN8aiV9jEakl4QmWMKDUIioFyw23_vLoSw3c-7kebD9nRH_gGymULz |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/LICS52264.2021.9470609 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Forestry Computer Science |
| EISBN | 9781665448956 1665448954 |
| EndPage | 13 |
| ExternalDocumentID | 9470609 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIO |
| ID | FETCH-LOGICAL-a289t-93b483dac34603deba2fdcb95bc42fdfb13b7a1f656dff8a3d2aa8104ac234043 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:26:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a289t-93b483dac34603deba2fdcb95bc42fdfb13b7a1f656dff8a3d2aa8104ac234043 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9470609 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-June-29 |
| PublicationDateYYYYMMDD | 2021-06-29 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-June-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science |
| PublicationTitleAbbrev | LICS |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002871049 |
| Score | 2.4066427 |
| Snippet | Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Computational modeling Computer science Forestry Games Semantics |
| Title | Lovász-Type Theorems and Game Comonads |
| URI | https://ieeexplore.ieee.org/document/9470609 |
| WOSCitedRecordID | wos000947350400042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3aIuKp2lb8Zg-CF9N2k-xmcy5WhVIKKvRW8gkeupVu24P_xt_iHzOzXSuCF29DIIRMCPNmkjcP4NpTI23qOVFcS8J1KolSSUJ87EKA947axJZiE2I8zqZTOanB7Y4L45wrP5-5LprlW75dmDWWynqSY68XWYe6EGLL1drVUxD5B7RbkYDjvuyNHgdPiC6wckLjbjX5l4pKGUSGzf8tfwidHzZeNNnFmSOoubwFzW85hqi6nS3YR5lN1G5rw81osfn8KN4JpplRyb938yJSuY3u1dxFYXJA4LbowMvw7nnwQCpJBKJCZrQikmmeMasM42mfWacV9dZomWjDg-V1zLRQsQ8ozXqfKWapUllwjDKUYSOdY2jki9ydQMSwU6AxTmZWcMeFtEgXCfmg4YnS3J9CG10we9t2vZhVuz_7e_gcDtDL-ImKygtorJZrdwl7ZrN6LZZX5VF9ASXjlPg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfVUbSu-3YPgxbTdJNvdnIva4loKVuit5AkeupW-Dv4bf4t_zMx2rQhevA2BQDIhzDeTfPMBXDuqhWk7TiRXgnDVFkTKKCIutD7AO0tNZHKxibjfT0YjMSjB7YYLY63NP5_ZBpr5W76Z6iWWypqCY68XsQXbEec0XLO1NhUVxP4e7xY04LAlmmmv84z4AmsnNGwU03_pqORh5L7yvwUcQP2HjxcMNpHmEEo2q0LlW5AhKO5nFXZRaBPV22pwk05Xnx_zd4KJZpAz8O1kHsjMBA9yYgM_2WNwM6_Dy_3dsNMlhSgCkT43WhDBFE-YkZrxdosZqyR1RisRKc295VTIVCxD53GacS6RzFApE-8YqSnDVjpHUM6mmT2GgGGvQK2tSEzMLY-FQcKIzwg1j6Ti7gRq6ILx27rvxbjY_enfw1ew1x0-peO01388g330OH6pouIcyovZ0l7Ajl4tXuezy_zYvgAYKpg_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Lov%C3%A1sz-Type+Theorems+and+Game+Comonads&rft.au=Dawar%2C+Anuj&rft.au=Jakl%2C+Tomas&rft.au=Reggio%2C+Luca&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470609&rft.externalDocID=9470609 |