SigMT: An open-source Python package for magnetotelluric data processing

The magnetotelluric (MT) data processing is often a time-consuming job due to the manual inspection of the time series and removal of noisy segments. Use of different data selection tools combined with the robust estimation of the impedances has enabled the automation of MT data processing to a larg...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & geosciences Ročník 171; s. 105270
Hlavní autori: Ajithabh, K.S., Patro, Prasanta K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2023
Predmet:
ISSN:0098-3004
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The magnetotelluric (MT) data processing is often a time-consuming job due to the manual inspection of the time series and removal of noisy segments. Use of different data selection tools combined with the robust estimation of the impedances has enabled the automation of MT data processing to a large extent. In this paper, we introduce an open-source Python package, named ‘SigMT’ for the automated MT data processing. This Python package offers Python scripts to estimate MT impedances and tipper data from the raw time series data. The overview of the SigMT package explaining different steps involved in the processing is discussed in this paper. Different data selection tools such as Mahalanobis distance based-, coherency threshold based-, polarization direction based-selection tools are integrated in the package. The incorporation of different data selection tools with robust estimation technique delivers best estimates of the impedances. SigMT is applied to the MT data from Himalaya with different selection tools and found to be yielding satisfactory results. •Open-source Python package for magnetotelluric data processing.•Automated processing of data, no need of any manual time series editing.•Availability of different data selection tools.•Robust estimation of the magnetotelluric impedance values.
AbstractList The magnetotelluric (MT) data processing is often a time-consuming job due to the manual inspection of the time series and removal of noisy segments. Use of different data selection tools combined with the robust estimation of the impedances has enabled the automation of MT data processing to a large extent. In this paper, we introduce an open-source Python package, named ‘SigMT’ for the automated MT data processing. This Python package offers Python scripts to estimate MT impedances and tipper data from the raw time series data. The overview of the SigMT package explaining different steps involved in the processing is discussed in this paper. Different data selection tools such as Mahalanobis distance based-, coherency threshold based-, polarization direction based-selection tools are integrated in the package. The incorporation of different data selection tools with robust estimation technique delivers best estimates of the impedances. SigMT is applied to the MT data from Himalaya with different selection tools and found to be yielding satisfactory results.
The magnetotelluric (MT) data processing is often a time-consuming job due to the manual inspection of the time series and removal of noisy segments. Use of different data selection tools combined with the robust estimation of the impedances has enabled the automation of MT data processing to a large extent. In this paper, we introduce an open-source Python package, named ‘SigMT’ for the automated MT data processing. This Python package offers Python scripts to estimate MT impedances and tipper data from the raw time series data. The overview of the SigMT package explaining different steps involved in the processing is discussed in this paper. Different data selection tools such as Mahalanobis distance based-, coherency threshold based-, polarization direction based-selection tools are integrated in the package. The incorporation of different data selection tools with robust estimation technique delivers best estimates of the impedances. SigMT is applied to the MT data from Himalaya with different selection tools and found to be yielding satisfactory results. •Open-source Python package for magnetotelluric data processing.•Automated processing of data, no need of any manual time series editing.•Availability of different data selection tools.•Robust estimation of the magnetotelluric impedance values.
ArticleNumber 105270
Author Patro, Prasanta K.
Ajithabh, K.S.
Author_xml – sequence: 1
  givenname: K.S.
  orcidid: 0000-0001-9438-6845
  surname: Ajithabh
  fullname: Ajithabh, K.S.
  organization: CSIR – National Geophysical Research Institute (NGRI), Hyderabad, 500007, India
– sequence: 2
  givenname: Prasanta K.
  orcidid: 0000-0003-3155-5693
  surname: Patro
  fullname: Patro, Prasanta K.
  email: patrobpk@ngri.res.in
  organization: CSIR – National Geophysical Research Institute (NGRI), Hyderabad, 500007, India
BookMark eNqFkD1PwzAQhj0UibbwC1gysqQ4dj4cJIaqAopUBBJltpzLpbi0drBdpP57XMrEANNJd-9zd3pGZGCsQUIuMjrJaFZerSegVmgnjDIWOwWr6IAMKa1FyinNT8nI-zWlcSqKIZm_6NXj8jqZmsT2aFJvdw4wed6HN2uSXsF7XJZ01iVbtTIYbMDNZuc0JK0KKumdBfRem9UZOenUxuP5Tx2T17vb5WyeLp7uH2bTRaqYqEMqmqZBQasWmoZTIXJWdgwFZk1dd0yVlRJF3tWibYBB1wJvyg6KMq95LljLgY_J5XFvPP2xQx_kVnuITymDduclzwousqpkZYzyYxSc9d5hJ3unt8rtZUblwZVcy29X8uBKHl1Fqv5FgQ4qaGuCU3rzD3tzZDEa-NTopAeNBrDVDiHI1uo_-S_GaIpu
CitedBy_id crossref_primary_10_1016_j_cageo_2024_105575
crossref_primary_10_1016_j_jappgeo_2024_105538
Cites_doi 10.1190/1.1440923
10.1016/j.jappgeo.2011.11.010
10.1038/s41561-022-00981-8
10.1126/science.189.4201.419
10.1029/2009JB006634
10.1029/2001GL013269
10.1029/JZ072i011p02871
10.1111/j.1365-246X.1986.tb04552.x
10.1111/j.1365-246X.2005.02621.x
10.1130/0091-7613(2001)029<0423:ELOTSC>2.0.CO;2
10.1038/nature10609
10.1046/j.1365-246X.1998.00440.x
10.4401/ag-6690
10.1111/j.1365-246X.1997.tb05663.x
10.1093/gji/ggz197
10.3389/feart.2020.00296
10.1016/j.cageo.2014.07.013
10.1007/s10712-017-9439-x
10.1190/1.9781560802686.ch8
10.1111/j.1365-246X.2004.02203.x
10.1038/nature04154
10.1016/j.epsl.2016.07.005
10.1046/j.1365-246X.2003.01902.x
10.1190/tle39100702.1
10.1190/1.1440885
10.1046/j.1365-246X.2003.01733.x
10.1029/JB092iB01p00633
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cageo.2022.105270
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
ExternalDocumentID 10_1016_j_cageo_2022_105270
S0098300422002199
GeographicLocations Himalayan region
GeographicLocations_xml – name: Himalayan region
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
SSE
~HD
7S9
L.6
ID FETCH-LOGICAL-a289t-8bbbe807dcbb3088426f2e8e1b99f2a67a854f98dbc2cfdc3b6fc56493482d3c3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000897755900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3004
IngestDate Sun Nov 09 09:44:42 EST 2025
Sat Nov 29 07:24:06 EST 2025
Tue Nov 18 21:26:08 EST 2025
Sun Apr 06 06:54:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Magnetotellurics
Data processing
SigMT
Python package
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a289t-8bbbe807dcbb3088426f2e8e1b99f2a67a854f98dbc2cfdc3b6fc56493482d3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3155-5693
0000-0001-9438-6845
PQID 3153817626
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153817626
crossref_primary_10_1016_j_cageo_2022_105270
crossref_citationtrail_10_1016_j_cageo_2022_105270
elsevier_sciencedirect_doi_10_1016_j_cageo_2022_105270
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Computers & geosciences
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib28) 2011; 12
Samrock, Grayver, Eysteinsson, Saar (bib31) 2018; 45
Swift (bib36) 1967
(bib4) 2012
Weckmann, Magunia, Ritter (bib39) 2005; 161
Vozoff (bib38) 1991; 2
Becken, Ritter, Bedrosian, Weckmann (bib1) 2011; 480
Bendat, Piersol (bib2) 2010
Shalivahan, Bhattacharya (bib32) 2002; 107
Mahalanobis (bib21) 1936; 2
Unsworth, Jones, Wei, Marquis, Gokarn, Spratt (bib37) 2005; 438
Krieger, Peacock (bib19) 2014; 72
Patro, Sarma (bib27) 2016; 451
Manoj, Nagarajan (bib23) 2003; 153
Egbert, Booker (bib10) 1986; 87
Efron (bib8) 1982
Copley, Avouac, Royer (bib7) 2010; 115
Fowler, Kotick, Elliot (bib12) 1967; 72
Patro (bib26) 2017; 38
Borah, Patro, Suresh (bib3) 2015; 58
Smirnov (bib35) 2003; 152
Jones, Jödicke (bib17) 1984
Ritter, Junge, Dawes (bib30) 1998; 132
Chave, Thomson, Ander (bib6) 1987; 92
Egbert (bib9) 1997; 130
Ogawa, Mishinia, Goto, Satoh, Oshiman, Kasaya, Takahashi, Nishitani, Sakanaka, Uyeshima, Takahashi, Honkura, Matsushima (bib25) 2001; 28
Molnar, Tapponnier (bib24) 1975; 189
Jones, Ferguson, Chave, Evans, McNeice (bib18) 2001; 29
Simpson, Bahr (bib33) 2005
Smaï, Wawrzyniak (bib34) 2020; 8
La Terra, Menezes (bib20) 2012; 77
Chave, Thomson (bib5) 2004; 157
Jenkins, Watts (bib16) 1968
Gamble, Goubau, Clarke (bib13) 1979; 44
Goubau, Gamble, Clarke (bib14) 1978; 43
Platz, Weckmann (bib29) 2019; 218
Imamura, Schultz (bib15) 2020; 39
Egbert, Yang, Bedrosian (bib11) 2022
Manoj (bib22) 2003
Manoj (10.1016/j.cageo.2022.105270_bib22) 2003
Manoj (10.1016/j.cageo.2022.105270_bib23) 2003; 153
Egbert (10.1016/j.cageo.2022.105270_bib10) 1986; 87
La Terra (10.1016/j.cageo.2022.105270_bib20) 2012; 77
Ritter (10.1016/j.cageo.2022.105270_bib30) 1998; 132
Smaï (10.1016/j.cageo.2022.105270_bib34) 2020; 8
Borah (10.1016/j.cageo.2022.105270_bib3) 2015; 58
Jones (10.1016/j.cageo.2022.105270_bib17) 1984
Unsworth (10.1016/j.cageo.2022.105270_bib37) 2005; 438
Pedregosa (10.1016/j.cageo.2022.105270_bib28) 2011; 12
Krieger (10.1016/j.cageo.2022.105270_bib19) 2014; 72
Patro (10.1016/j.cageo.2022.105270_bib26) 2017; 38
Swift (10.1016/j.cageo.2022.105270_bib36) 1967
Chave (10.1016/j.cageo.2022.105270_bib6) 1987; 92
(10.1016/j.cageo.2022.105270_bib4) 2012
Ogawa (10.1016/j.cageo.2022.105270_bib25) 2001; 28
Fowler (10.1016/j.cageo.2022.105270_bib12) 1967; 72
Goubau (10.1016/j.cageo.2022.105270_bib14) 1978; 43
Becken (10.1016/j.cageo.2022.105270_bib1) 2011; 480
Gamble (10.1016/j.cageo.2022.105270_bib13) 1979; 44
Platz (10.1016/j.cageo.2022.105270_bib29) 2019; 218
Copley (10.1016/j.cageo.2022.105270_bib7) 2010; 115
Bendat (10.1016/j.cageo.2022.105270_bib2) 2010
Smirnov (10.1016/j.cageo.2022.105270_bib35) 2003; 152
Efron (10.1016/j.cageo.2022.105270_bib8) 1982
Chave (10.1016/j.cageo.2022.105270_bib5) 2004; 157
Egbert (10.1016/j.cageo.2022.105270_bib9) 1997; 130
Shalivahan (10.1016/j.cageo.2022.105270_bib32) 2002; 107
Imamura (10.1016/j.cageo.2022.105270_bib15) 2020; 39
Mahalanobis (10.1016/j.cageo.2022.105270_bib21) 1936; 2
Jenkins (10.1016/j.cageo.2022.105270_bib16) 1968
Vozoff (10.1016/j.cageo.2022.105270_bib38) 1991; 2
Molnar (10.1016/j.cageo.2022.105270_bib24) 1975; 189
Patro (10.1016/j.cageo.2022.105270_bib27) 2016; 451
Samrock (10.1016/j.cageo.2022.105270_bib31) 2018; 45
Weckmann (10.1016/j.cageo.2022.105270_bib39) 2005; 161
Simpson (10.1016/j.cageo.2022.105270_bib33) 2005
Egbert (10.1016/j.cageo.2022.105270_bib11) 2022
Jones (10.1016/j.cageo.2022.105270_bib18) 2001; 29
References_xml – year: 2003
  ident: bib22
  article-title: Magnetotelluric Data Analysis Using Advances in Signal Processing Techniques
– volume: 152
  start-page: 1
  year: 2003
  end-page: 7
  ident: bib35
  article-title: Magnetotelluric data processing with a robust statistical procedure having a high breakdown point
  publication-title: Geophys. J. Int.
– volume: 115
  year: 2010
  ident: bib7
  article-title: India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions
  publication-title: J. Geophys. Res. Solid Earth
– volume: 39
  start-page: 702
  year: 2020
  end-page: 710
  ident: bib15
  article-title: Quality estimation of magnetotelluric impedance tensors using neural networks
  publication-title: Lead. Edge
– volume: 72
  start-page: 167
  year: 2014
  end-page: 175
  ident: bib19
  article-title: MTpy: a Python toolbox for magnetotellurics
  publication-title: Comput. Geosci.
– volume: 2
  start-page: 49
  year: 1936
  end-page: 55
  ident: bib21
  article-title: On the generalised distance in statistics
  publication-title: Proc. Natl. Inst. Sci. India
– volume: 189
  start-page: 419
  year: 1975
  end-page: 426
  ident: bib24
  article-title: Cenozoic tectonics of Asia: Eects of a continental collision
  publication-title: Science
– volume: 218
  start-page: 1853
  year: 2019
  end-page: 1872
  ident: bib29
  article-title: An automated new pre-selection tool for noisy Magnetotelluric data using the Mahalanobis distance and magnetic field constraints
  publication-title: Geophys. J. Int.
– volume: 8
  start-page: 296
  year: 2020
  ident: bib34
  article-title: Razorback, an open source Python library for robust processing of magnetotelluric data
  publication-title: Front. Earth Sci.
– volume: 153
  start-page: 409
  year: 2003
  end-page: 423
  ident: bib23
  article-title: The application of artificial neural networks to magnetotelluric time-series analysis
  publication-title: Geophys. J. Int.
– volume: 2
  start-page: 641
  year: 1991
  end-page: 712
  ident: bib38
  article-title: 8. The magnetotelluric method
  publication-title: Electromag. Methods Appl. Geophys.
– volume: 58
  start-page: G0222
  year: 2015
  ident: bib3
  article-title: Processing of noisy magnetotelluric time series from Koyna-Warna seismic region, India: a systematic approach
  publication-title: Ann. Geophys.
– year: 1968
  ident: bib16
  article-title: Spectral Analysis and its Applications
– volume: 132
  start-page: 535
  year: 1998
  end-page: 548
  ident: bib30
  article-title: New equipment and processing for magnetotelluric remote reference observations
  publication-title: Geophys. J. Int.
– year: 2022
  ident: bib11
  article-title: Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology
  publication-title: Nat. Geosci.
– year: 1984
  ident: bib17
  article-title: Magnetotelluric Transfer Function Estimation Improvement by a Coherence-Based Rejection Technique
– year: 2005
  ident: bib33
  article-title: Practical Magnetotellurics
– volume: 72
  start-page: 2871
  year: 1967
  end-page: 2883
  ident: bib12
  article-title: Polarization analysis of naturally and artificially geomagnetic micropulsations
  publication-title: J. Geophys. Res.
– year: 1982
  ident: bib8
  article-title: The Jackknife, the Bootstrap, and Other Resampling Plans
– volume: 438
  start-page: 78
  year: 2005
  end-page: 81
  ident: bib37
  article-title: Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data
  publication-title: Nature
– volume: 44
  start-page: 53
  year: 1979
  end-page: 68
  ident: bib13
  article-title: Magnetotellurics with a remote magnetic reference
  publication-title: Geophysics
– year: 2012
  ident: bib4
  publication-title: The Magnetotelluric Method: Theory and Practice
– volume: 29
  start-page: 423
  year: 2001
  end-page: 426
  ident: bib18
  article-title: Electric lithosphere of the Slave craton
  publication-title: Geology
– volume: 87
  start-page: 173
  year: 1986
  end-page: 194
  ident: bib10
  article-title: Robust estimation of geomagnetic transfer functions
  publication-title: Geophys. J. Int.
– volume: 480
  start-page: 87
  year: 2011
  end-page: 90
  ident: bib1
  article-title: Correlation between deep fluids, tremor and creep along the central San Andreas fault
  publication-title: Nature
– volume: 451
  start-page: 168
  year: 2016
  end-page: 176
  ident: bib27
  article-title: Evidence for an extensive intrusive component of the Deccan Large Igneous Province in the Narmada Son Lineament region, India from three dimensional magnetotelluric studies
  publication-title: Earth Planet Sci. Lett.
– year: 2010
  ident: bib2
  article-title: Random Data: Analysis and Measurement Procedures
– volume: 130
  start-page: 475
  year: 1997
  end-page: 496
  ident: bib9
  article-title: Robust multiple-station magnetotelluric data processing
  publication-title: Geophys. J. Int.
– volume: 157
  start-page: 988
  year: 2004
  end-page: 1006
  ident: bib5
  article-title: Bounded influence magnetotelluric response function estimation
  publication-title: Geophys. J. Int.
– volume: 92
  start-page: 633
  year: 1987
  end-page: 648
  ident: bib6
  article-title: On the robust estimation of power spectra, coherences, and transfer functions
  publication-title: J. Geophys. Res. Solid Earth
– year: 1967
  ident: bib36
  article-title: A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the Southwestern United States
– volume: 43
  start-page: 1157
  year: 1978
  end-page: 1166
  ident: bib14
  article-title: Magnetotelluric data analysis; removal of bias
  publication-title: Geophysics
– volume: 28
  start-page: 3741
  year: 2001
  end-page: 3744
  ident: bib25
  article-title: Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan Back Arc
  publication-title: Geophys. Res. Lett.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib28
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 107
  year: 2002
  ident: bib32
  article-title: How remote can the far remote reference site for magnetotelluric measurements be?
  publication-title: J. Geophys. Res.
– volume: 77
  start-page: 30
  year: 2012
  end-page: 38
  ident: bib20
  article-title: Audiomagnetotelluric 3D imaging of the Regis kimberlite pipe, Minas Gerais, Brazil
  publication-title: J. Appl. Geophys.
– volume: 45
  start-page: 847
  year: 2018
  ident: bib31
  article-title: Magnetotelluric image of transcrustal magmatic system beneath the Tulu Moye geothermal prospect in the Ethiopian rift
  publication-title: Geophys. Res. Lett.
– volume: 161
  start-page: 635
  year: 2005
  end-page: 652
  ident: bib39
  article-title: Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme
  publication-title: Geophys. J. Int.
– volume: 38
  start-page: 1005
  year: 2017
  end-page: 1041
  ident: bib26
  article-title: Magnetotelluric studies for hydrocarbon and geothermal resources: examples from the Asian region
  publication-title: Surv. Geophys.
– volume: 44
  start-page: 53
  issue: 1
  year: 1979
  ident: 10.1016/j.cageo.2022.105270_bib13
  article-title: Magnetotellurics with a remote magnetic reference
  publication-title: Geophysics
  doi: 10.1190/1.1440923
– year: 2003
  ident: 10.1016/j.cageo.2022.105270_bib22
– volume: 77
  start-page: 30
  year: 2012
  ident: 10.1016/j.cageo.2022.105270_bib20
  article-title: Audiomagnetotelluric 3D imaging of the Regis kimberlite pipe, Minas Gerais, Brazil
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2011.11.010
– year: 1984
  ident: 10.1016/j.cageo.2022.105270_bib17
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.cageo.2022.105270_bib28
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– year: 2022
  ident: 10.1016/j.cageo.2022.105270_bib11
  article-title: Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-022-00981-8
– volume: 189
  start-page: 419
  issue: 4201
  year: 1975
  ident: 10.1016/j.cageo.2022.105270_bib24
  article-title: Cenozoic tectonics of Asia: Eects of a continental collision
  publication-title: Science
  doi: 10.1126/science.189.4201.419
– year: 1982
  ident: 10.1016/j.cageo.2022.105270_bib8
– volume: 115
  issue: B3
  year: 2010
  ident: 10.1016/j.cageo.2022.105270_bib7
  article-title: India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2009JB006634
– volume: 28
  start-page: 3741
  issue: 19
  year: 2001
  ident: 10.1016/j.cageo.2022.105270_bib25
  article-title: Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan Back Arc
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2001GL013269
– volume: 72
  start-page: 2871
  year: 1967
  ident: 10.1016/j.cageo.2022.105270_bib12
  article-title: Polarization analysis of naturally and artificially geomagnetic micropulsations
  publication-title: J. Geophys. Res.
  doi: 10.1029/JZ072i011p02871
– volume: 87
  start-page: 173
  issue: 1
  year: 1986
  ident: 10.1016/j.cageo.2022.105270_bib10
  article-title: Robust estimation of geomagnetic transfer functions
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1986.tb04552.x
– volume: 107
  issue: B6
  year: 2002
  ident: 10.1016/j.cageo.2022.105270_bib32
  article-title: How remote can the far remote reference site for magnetotelluric measurements be?
  publication-title: J. Geophys. Res.
– volume: 161
  start-page: 635
  issue: 3
  year: 2005
  ident: 10.1016/j.cageo.2022.105270_bib39
  article-title: Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2005.02621.x
– year: 2012
  ident: 10.1016/j.cageo.2022.105270_bib4
– volume: 29
  start-page: 423
  issue: 5
  year: 2001
  ident: 10.1016/j.cageo.2022.105270_bib18
  article-title: Electric lithosphere of the Slave craton
  publication-title: Geology
  doi: 10.1130/0091-7613(2001)029<0423:ELOTSC>2.0.CO;2
– year: 1968
  ident: 10.1016/j.cageo.2022.105270_bib16
– volume: 480
  start-page: 87
  year: 2011
  ident: 10.1016/j.cageo.2022.105270_bib1
  article-title: Correlation between deep fluids, tremor and creep along the central San Andreas fault
  publication-title: Nature
  doi: 10.1038/nature10609
– volume: 132
  start-page: 535
  issue: 3
  year: 1998
  ident: 10.1016/j.cageo.2022.105270_bib30
  article-title: New equipment and processing for magnetotelluric remote reference observations
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.1998.00440.x
– volume: 58
  start-page: G0222
  issue: 2
  year: 2015
  ident: 10.1016/j.cageo.2022.105270_bib3
  article-title: Processing of noisy magnetotelluric time series from Koyna-Warna seismic region, India: a systematic approach
  publication-title: Ann. Geophys.
  doi: 10.4401/ag-6690
– volume: 130
  start-page: 475
  issue: 2
  year: 1997
  ident: 10.1016/j.cageo.2022.105270_bib9
  article-title: Robust multiple-station magnetotelluric data processing
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1997.tb05663.x
– volume: 218
  start-page: 1853
  issue: 3
  year: 2019
  ident: 10.1016/j.cageo.2022.105270_bib29
  article-title: An automated new pre-selection tool for noisy Magnetotelluric data using the Mahalanobis distance and magnetic field constraints
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggz197
– volume: 8
  start-page: 296
  year: 2020
  ident: 10.1016/j.cageo.2022.105270_bib34
  article-title: Razorback, an open source Python library for robust processing of magnetotelluric data
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2020.00296
– volume: 72
  start-page: 167
  year: 2014
  ident: 10.1016/j.cageo.2022.105270_bib19
  article-title: MTpy: a Python toolbox for magnetotellurics
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.07.013
– volume: 38
  start-page: 1005
  year: 2017
  ident: 10.1016/j.cageo.2022.105270_bib26
  article-title: Magnetotelluric studies for hydrocarbon and geothermal resources: examples from the Asian region
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-017-9439-x
– volume: 2
  start-page: 641
  year: 1991
  ident: 10.1016/j.cageo.2022.105270_bib38
  article-title: 8. The magnetotelluric method
  publication-title: Electromag. Methods Appl. Geophys.
  doi: 10.1190/1.9781560802686.ch8
– volume: 157
  start-page: 988
  issue: 3
  year: 2004
  ident: 10.1016/j.cageo.2022.105270_bib5
  article-title: Bounded influence magnetotelluric response function estimation
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2004.02203.x
– volume: 438
  start-page: 78
  year: 2005
  ident: 10.1016/j.cageo.2022.105270_bib37
  article-title: Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data
  publication-title: Nature
  doi: 10.1038/nature04154
– volume: 2
  start-page: 49
  issue: 1
  year: 1936
  ident: 10.1016/j.cageo.2022.105270_bib21
  article-title: On the generalised distance in statistics
  publication-title: Proc. Natl. Inst. Sci. India
– year: 2010
  ident: 10.1016/j.cageo.2022.105270_bib2
– volume: 451
  start-page: 168
  year: 2016
  ident: 10.1016/j.cageo.2022.105270_bib27
  article-title: Evidence for an extensive intrusive component of the Deccan Large Igneous Province in the Narmada Son Lineament region, India from three dimensional magnetotelluric studies
  publication-title: Earth Planet Sci. Lett.
  doi: 10.1016/j.epsl.2016.07.005
– year: 2005
  ident: 10.1016/j.cageo.2022.105270_bib33
– volume: 45
  start-page: 847
  issue: 12
  year: 2018
  ident: 10.1016/j.cageo.2022.105270_bib31
  article-title: Magnetotelluric image of transcrustal magmatic system beneath the Tulu Moye geothermal prospect in the Ethiopian rift
  publication-title: Geophys. Res. Lett.
– volume: 153
  start-page: 409
  issue: 2
  year: 2003
  ident: 10.1016/j.cageo.2022.105270_bib23
  article-title: The application of artificial neural networks to magnetotelluric time-series analysis
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2003.01902.x
– volume: 39
  start-page: 702
  issue: 10
  year: 2020
  ident: 10.1016/j.cageo.2022.105270_bib15
  article-title: Quality estimation of magnetotelluric impedance tensors using neural networks
  publication-title: Lead. Edge
  doi: 10.1190/tle39100702.1
– volume: 43
  start-page: 1157
  issue: 6
  year: 1978
  ident: 10.1016/j.cageo.2022.105270_bib14
  article-title: Magnetotelluric data analysis; removal of bias
  publication-title: Geophysics
  doi: 10.1190/1.1440885
– volume: 152
  start-page: 1
  year: 2003
  ident: 10.1016/j.cageo.2022.105270_bib35
  article-title: Magnetotelluric data processing with a robust statistical procedure having a high breakdown point
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2003.01733.x
– year: 1967
  ident: 10.1016/j.cageo.2022.105270_bib36
– volume: 92
  start-page: 633
  issue: B1
  year: 1987
  ident: 10.1016/j.cageo.2022.105270_bib6
  article-title: On the robust estimation of power spectra, coherences, and transfer functions
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB092iB01p00633
SSID ssj0002285
Score 2.387154
Snippet The magnetotelluric (MT) data processing is often a time-consuming job due to the manual inspection of the time series and removal of noisy segments. Use of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105270
SubjectTerms automation
computer software
Data processing
Himalayan region
Magnetotellurics
Python package
SigMT
time series analysis
Title SigMT: An open-source Python package for magnetotelluric data processing
URI https://dx.doi.org/10.1016/j.cageo.2022.105270
https://www.proquest.com/docview/3153817626
Volume 171
WOSCitedRecordID wos000897755900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0098-3004
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002285
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELagCxIviFMsl4zEW8mqdS6btwotLNeqUovUt8h2nG4LpFWTRbv_nhkfzdIVK0DiJYrS2pHmm3jG45lvCHnJs7xMdZpGZZJWUaKNiHg2LCM8ZDOxVsIoyzP7KT8-5rOZGPuOgo1tJ5DXNT87E-v_CjU8A7CxdPYv4N5OCg_gHkCHK8AO1z8CfrKYf576eB_2xopcfL4_PkeagD7skb9ing6mF36X89q0KywkQXKhPqaL9teudCCYtMBi4Ls_NFZX5sZzYHYZiKPloj2RykZpPh5MDrqzqdaV0ow3sgEYJfx6MdTA4pCdHOJfoQamSziya6rgEfJ2_bKmur4ql9ZnFypYwt57bksvGcNGw8z1Dtkhvp7gzLElKUNPRIjrZI_lqeA9sjd6fzj7sLW4jPE0cKPigMAuZfP4Lr3qdx7Iji22Dsb0DrntdwZ05BC9S66Z-h65-c52Xj6_T44srq_pqKYXUKUOVepRpYAq3UGVIqq0Q_UB-fL2cPrmKPJtMCIJu-E24kopwwd5qZWKwSiAT1Uxw81QCVExmeWSp0kleKk001WpY6zfSrNEIG9RGev4IenVq9o8InQohxkXg1IbrpMqExLdZfiGwecbVLmQ-4QF0RTac8Rjq5JvRUgGXBZWngXKs3Dy3CevtoPWjiLl6r9nQeaFV1XnvRWgJFcPfBEQKmANxIMtWZvVaVPEaLaHYNazx_86-RNyq9P4p6TXbk7NM3JD_2gXzea5V7ifOfuB3Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SigMT%3A+An+open-source+Python+package+for+magnetotelluric+data+processing&rft.jtitle=Computers+%26+geosciences&rft.au=Ajithabh%2C+K.S.&rft.au=Patro%2C+Prasanta+K.&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0098-3004&rft.volume=171&rft_id=info:doi/10.1016%2Fj.cageo.2022.105270&rft.externalDocID=S0098300422002199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon