SigMT: An open-source Python package for magnetotelluric data processing
The magnetotelluric (MT) data processing is often a time-consuming job due to the manual inspection of the time series and removal of noisy segments. Use of different data selection tools combined with the robust estimation of the impedances has enabled the automation of MT data processing to a larg...
Uložené v:
| Vydané v: | Computers & geosciences Ročník 171; s. 105270 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.02.2023
|
| Predmet: | |
| ISSN: | 0098-3004 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The magnetotelluric (MT) data processing is often a time-consuming job due to the manual inspection of the time series and removal of noisy segments. Use of different data selection tools combined with the robust estimation of the impedances has enabled the automation of MT data processing to a large extent. In this paper, we introduce an open-source Python package, named ‘SigMT’ for the automated MT data processing. This Python package offers Python scripts to estimate MT impedances and tipper data from the raw time series data. The overview of the SigMT package explaining different steps involved in the processing is discussed in this paper. Different data selection tools such as Mahalanobis distance based-, coherency threshold based-, polarization direction based-selection tools are integrated in the package. The incorporation of different data selection tools with robust estimation technique delivers best estimates of the impedances. SigMT is applied to the MT data from Himalaya with different selection tools and found to be yielding satisfactory results.
•Open-source Python package for magnetotelluric data processing.•Automated processing of data, no need of any manual time series editing.•Availability of different data selection tools.•Robust estimation of the magnetotelluric impedance values. |
|---|---|
| AbstractList | The magnetotelluric (MT) data processing is often a time-consuming job due to the manual inspection of the time series and removal of noisy segments. Use of different data selection tools combined with the robust estimation of the impedances has enabled the automation of MT data processing to a large extent. In this paper, we introduce an open-source Python package, named ‘SigMT’ for the automated MT data processing. This Python package offers Python scripts to estimate MT impedances and tipper data from the raw time series data. The overview of the SigMT package explaining different steps involved in the processing is discussed in this paper. Different data selection tools such as Mahalanobis distance based-, coherency threshold based-, polarization direction based-selection tools are integrated in the package. The incorporation of different data selection tools with robust estimation technique delivers best estimates of the impedances. SigMT is applied to the MT data from Himalaya with different selection tools and found to be yielding satisfactory results. The magnetotelluric (MT) data processing is often a time-consuming job due to the manual inspection of the time series and removal of noisy segments. Use of different data selection tools combined with the robust estimation of the impedances has enabled the automation of MT data processing to a large extent. In this paper, we introduce an open-source Python package, named ‘SigMT’ for the automated MT data processing. This Python package offers Python scripts to estimate MT impedances and tipper data from the raw time series data. The overview of the SigMT package explaining different steps involved in the processing is discussed in this paper. Different data selection tools such as Mahalanobis distance based-, coherency threshold based-, polarization direction based-selection tools are integrated in the package. The incorporation of different data selection tools with robust estimation technique delivers best estimates of the impedances. SigMT is applied to the MT data from Himalaya with different selection tools and found to be yielding satisfactory results. •Open-source Python package for magnetotelluric data processing.•Automated processing of data, no need of any manual time series editing.•Availability of different data selection tools.•Robust estimation of the magnetotelluric impedance values. |
| ArticleNumber | 105270 |
| Author | Patro, Prasanta K. Ajithabh, K.S. |
| Author_xml | – sequence: 1 givenname: K.S. orcidid: 0000-0001-9438-6845 surname: Ajithabh fullname: Ajithabh, K.S. organization: CSIR – National Geophysical Research Institute (NGRI), Hyderabad, 500007, India – sequence: 2 givenname: Prasanta K. orcidid: 0000-0003-3155-5693 surname: Patro fullname: Patro, Prasanta K. email: patrobpk@ngri.res.in organization: CSIR – National Geophysical Research Institute (NGRI), Hyderabad, 500007, India |
| BookMark | eNqFkD1PwzAQhj0UibbwC1gysqQ4dj4cJIaqAopUBBJltpzLpbi0drBdpP57XMrEANNJd-9zd3pGZGCsQUIuMjrJaFZerSegVmgnjDIWOwWr6IAMKa1FyinNT8nI-zWlcSqKIZm_6NXj8jqZmsT2aFJvdw4wed6HN2uSXsF7XJZ01iVbtTIYbMDNZuc0JK0KKumdBfRem9UZOenUxuP5Tx2T17vb5WyeLp7uH2bTRaqYqEMqmqZBQasWmoZTIXJWdgwFZk1dd0yVlRJF3tWibYBB1wJvyg6KMq95LljLgY_J5XFvPP2xQx_kVnuITymDduclzwousqpkZYzyYxSc9d5hJ3unt8rtZUblwZVcy29X8uBKHl1Fqv5FgQ4qaGuCU3rzD3tzZDEa-NTopAeNBrDVDiHI1uo_-S_GaIpu |
| CitedBy_id | crossref_primary_10_1016_j_cageo_2024_105575 crossref_primary_10_1016_j_jappgeo_2024_105538 |
| Cites_doi | 10.1190/1.1440923 10.1016/j.jappgeo.2011.11.010 10.1038/s41561-022-00981-8 10.1126/science.189.4201.419 10.1029/2009JB006634 10.1029/2001GL013269 10.1029/JZ072i011p02871 10.1111/j.1365-246X.1986.tb04552.x 10.1111/j.1365-246X.2005.02621.x 10.1130/0091-7613(2001)029<0423:ELOTSC>2.0.CO;2 10.1038/nature10609 10.1046/j.1365-246X.1998.00440.x 10.4401/ag-6690 10.1111/j.1365-246X.1997.tb05663.x 10.1093/gji/ggz197 10.3389/feart.2020.00296 10.1016/j.cageo.2014.07.013 10.1007/s10712-017-9439-x 10.1190/1.9781560802686.ch8 10.1111/j.1365-246X.2004.02203.x 10.1038/nature04154 10.1016/j.epsl.2016.07.005 10.1046/j.1365-246X.2003.01902.x 10.1190/tle39100702.1 10.1190/1.1440885 10.1046/j.1365-246X.2003.01733.x 10.1029/JB092iB01p00633 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.cageo.2022.105270 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| ExternalDocumentID | 10_1016_j_cageo_2022_105270 S0098300422002199 |
| GeographicLocations | Himalayan region |
| GeographicLocations_xml | – name: Himalayan region |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACNNM ACRLP ACRPL ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSH SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI ADXHL AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG SSE ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a289t-8bbbe807dcbb3088426f2e8e1b99f2a67a854f98dbc2cfdc3b6fc56493482d3c3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000897755900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-3004 |
| IngestDate | Sun Nov 09 09:44:42 EST 2025 Sat Nov 29 07:24:06 EST 2025 Tue Nov 18 21:26:08 EST 2025 Sun Apr 06 06:54:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Magnetotellurics Data processing SigMT Python package |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a289t-8bbbe807dcbb3088426f2e8e1b99f2a67a854f98dbc2cfdc3b6fc56493482d3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3155-5693 0000-0001-9438-6845 |
| PQID | 3153817626 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153817626 crossref_primary_10_1016_j_cageo_2022_105270 crossref_citationtrail_10_1016_j_cageo_2022_105270 elsevier_sciencedirect_doi_10_1016_j_cageo_2022_105270 |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & geosciences |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib28) 2011; 12 Samrock, Grayver, Eysteinsson, Saar (bib31) 2018; 45 Swift (bib36) 1967 (bib4) 2012 Weckmann, Magunia, Ritter (bib39) 2005; 161 Vozoff (bib38) 1991; 2 Becken, Ritter, Bedrosian, Weckmann (bib1) 2011; 480 Bendat, Piersol (bib2) 2010 Shalivahan, Bhattacharya (bib32) 2002; 107 Mahalanobis (bib21) 1936; 2 Unsworth, Jones, Wei, Marquis, Gokarn, Spratt (bib37) 2005; 438 Krieger, Peacock (bib19) 2014; 72 Patro, Sarma (bib27) 2016; 451 Manoj, Nagarajan (bib23) 2003; 153 Egbert, Booker (bib10) 1986; 87 Efron (bib8) 1982 Copley, Avouac, Royer (bib7) 2010; 115 Fowler, Kotick, Elliot (bib12) 1967; 72 Patro (bib26) 2017; 38 Borah, Patro, Suresh (bib3) 2015; 58 Smirnov (bib35) 2003; 152 Jones, Jödicke (bib17) 1984 Ritter, Junge, Dawes (bib30) 1998; 132 Chave, Thomson, Ander (bib6) 1987; 92 Egbert (bib9) 1997; 130 Ogawa, Mishinia, Goto, Satoh, Oshiman, Kasaya, Takahashi, Nishitani, Sakanaka, Uyeshima, Takahashi, Honkura, Matsushima (bib25) 2001; 28 Molnar, Tapponnier (bib24) 1975; 189 Jones, Ferguson, Chave, Evans, McNeice (bib18) 2001; 29 Simpson, Bahr (bib33) 2005 Smaï, Wawrzyniak (bib34) 2020; 8 La Terra, Menezes (bib20) 2012; 77 Chave, Thomson (bib5) 2004; 157 Jenkins, Watts (bib16) 1968 Gamble, Goubau, Clarke (bib13) 1979; 44 Goubau, Gamble, Clarke (bib14) 1978; 43 Platz, Weckmann (bib29) 2019; 218 Imamura, Schultz (bib15) 2020; 39 Egbert, Yang, Bedrosian (bib11) 2022 Manoj (bib22) 2003 Manoj (10.1016/j.cageo.2022.105270_bib22) 2003 Manoj (10.1016/j.cageo.2022.105270_bib23) 2003; 153 Egbert (10.1016/j.cageo.2022.105270_bib10) 1986; 87 La Terra (10.1016/j.cageo.2022.105270_bib20) 2012; 77 Ritter (10.1016/j.cageo.2022.105270_bib30) 1998; 132 Smaï (10.1016/j.cageo.2022.105270_bib34) 2020; 8 Borah (10.1016/j.cageo.2022.105270_bib3) 2015; 58 Jones (10.1016/j.cageo.2022.105270_bib17) 1984 Unsworth (10.1016/j.cageo.2022.105270_bib37) 2005; 438 Pedregosa (10.1016/j.cageo.2022.105270_bib28) 2011; 12 Krieger (10.1016/j.cageo.2022.105270_bib19) 2014; 72 Patro (10.1016/j.cageo.2022.105270_bib26) 2017; 38 Swift (10.1016/j.cageo.2022.105270_bib36) 1967 Chave (10.1016/j.cageo.2022.105270_bib6) 1987; 92 (10.1016/j.cageo.2022.105270_bib4) 2012 Ogawa (10.1016/j.cageo.2022.105270_bib25) 2001; 28 Fowler (10.1016/j.cageo.2022.105270_bib12) 1967; 72 Goubau (10.1016/j.cageo.2022.105270_bib14) 1978; 43 Becken (10.1016/j.cageo.2022.105270_bib1) 2011; 480 Gamble (10.1016/j.cageo.2022.105270_bib13) 1979; 44 Platz (10.1016/j.cageo.2022.105270_bib29) 2019; 218 Copley (10.1016/j.cageo.2022.105270_bib7) 2010; 115 Bendat (10.1016/j.cageo.2022.105270_bib2) 2010 Smirnov (10.1016/j.cageo.2022.105270_bib35) 2003; 152 Efron (10.1016/j.cageo.2022.105270_bib8) 1982 Chave (10.1016/j.cageo.2022.105270_bib5) 2004; 157 Egbert (10.1016/j.cageo.2022.105270_bib9) 1997; 130 Shalivahan (10.1016/j.cageo.2022.105270_bib32) 2002; 107 Imamura (10.1016/j.cageo.2022.105270_bib15) 2020; 39 Mahalanobis (10.1016/j.cageo.2022.105270_bib21) 1936; 2 Jenkins (10.1016/j.cageo.2022.105270_bib16) 1968 Vozoff (10.1016/j.cageo.2022.105270_bib38) 1991; 2 Molnar (10.1016/j.cageo.2022.105270_bib24) 1975; 189 Patro (10.1016/j.cageo.2022.105270_bib27) 2016; 451 Samrock (10.1016/j.cageo.2022.105270_bib31) 2018; 45 Weckmann (10.1016/j.cageo.2022.105270_bib39) 2005; 161 Simpson (10.1016/j.cageo.2022.105270_bib33) 2005 Egbert (10.1016/j.cageo.2022.105270_bib11) 2022 Jones (10.1016/j.cageo.2022.105270_bib18) 2001; 29 |
| References_xml | – year: 2003 ident: bib22 article-title: Magnetotelluric Data Analysis Using Advances in Signal Processing Techniques – volume: 152 start-page: 1 year: 2003 end-page: 7 ident: bib35 article-title: Magnetotelluric data processing with a robust statistical procedure having a high breakdown point publication-title: Geophys. J. Int. – volume: 115 year: 2010 ident: bib7 article-title: India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions publication-title: J. Geophys. Res. Solid Earth – volume: 39 start-page: 702 year: 2020 end-page: 710 ident: bib15 article-title: Quality estimation of magnetotelluric impedance tensors using neural networks publication-title: Lead. Edge – volume: 72 start-page: 167 year: 2014 end-page: 175 ident: bib19 article-title: MTpy: a Python toolbox for magnetotellurics publication-title: Comput. Geosci. – volume: 2 start-page: 49 year: 1936 end-page: 55 ident: bib21 article-title: On the generalised distance in statistics publication-title: Proc. Natl. Inst. Sci. India – volume: 189 start-page: 419 year: 1975 end-page: 426 ident: bib24 article-title: Cenozoic tectonics of Asia: Eects of a continental collision publication-title: Science – volume: 218 start-page: 1853 year: 2019 end-page: 1872 ident: bib29 article-title: An automated new pre-selection tool for noisy Magnetotelluric data using the Mahalanobis distance and magnetic field constraints publication-title: Geophys. J. Int. – volume: 8 start-page: 296 year: 2020 ident: bib34 article-title: Razorback, an open source Python library for robust processing of magnetotelluric data publication-title: Front. Earth Sci. – volume: 153 start-page: 409 year: 2003 end-page: 423 ident: bib23 article-title: The application of artificial neural networks to magnetotelluric time-series analysis publication-title: Geophys. J. Int. – volume: 2 start-page: 641 year: 1991 end-page: 712 ident: bib38 article-title: 8. The magnetotelluric method publication-title: Electromag. Methods Appl. Geophys. – volume: 58 start-page: G0222 year: 2015 ident: bib3 article-title: Processing of noisy magnetotelluric time series from Koyna-Warna seismic region, India: a systematic approach publication-title: Ann. Geophys. – year: 1968 ident: bib16 article-title: Spectral Analysis and its Applications – volume: 132 start-page: 535 year: 1998 end-page: 548 ident: bib30 article-title: New equipment and processing for magnetotelluric remote reference observations publication-title: Geophys. J. Int. – year: 2022 ident: bib11 article-title: Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology publication-title: Nat. Geosci. – year: 1984 ident: bib17 article-title: Magnetotelluric Transfer Function Estimation Improvement by a Coherence-Based Rejection Technique – year: 2005 ident: bib33 article-title: Practical Magnetotellurics – volume: 72 start-page: 2871 year: 1967 end-page: 2883 ident: bib12 article-title: Polarization analysis of naturally and artificially geomagnetic micropulsations publication-title: J. Geophys. Res. – year: 1982 ident: bib8 article-title: The Jackknife, the Bootstrap, and Other Resampling Plans – volume: 438 start-page: 78 year: 2005 end-page: 81 ident: bib37 article-title: Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data publication-title: Nature – volume: 44 start-page: 53 year: 1979 end-page: 68 ident: bib13 article-title: Magnetotellurics with a remote magnetic reference publication-title: Geophysics – year: 2012 ident: bib4 publication-title: The Magnetotelluric Method: Theory and Practice – volume: 29 start-page: 423 year: 2001 end-page: 426 ident: bib18 article-title: Electric lithosphere of the Slave craton publication-title: Geology – volume: 87 start-page: 173 year: 1986 end-page: 194 ident: bib10 article-title: Robust estimation of geomagnetic transfer functions publication-title: Geophys. J. Int. – volume: 480 start-page: 87 year: 2011 end-page: 90 ident: bib1 article-title: Correlation between deep fluids, tremor and creep along the central San Andreas fault publication-title: Nature – volume: 451 start-page: 168 year: 2016 end-page: 176 ident: bib27 article-title: Evidence for an extensive intrusive component of the Deccan Large Igneous Province in the Narmada Son Lineament region, India from three dimensional magnetotelluric studies publication-title: Earth Planet Sci. Lett. – year: 2010 ident: bib2 article-title: Random Data: Analysis and Measurement Procedures – volume: 130 start-page: 475 year: 1997 end-page: 496 ident: bib9 article-title: Robust multiple-station magnetotelluric data processing publication-title: Geophys. J. Int. – volume: 157 start-page: 988 year: 2004 end-page: 1006 ident: bib5 article-title: Bounded influence magnetotelluric response function estimation publication-title: Geophys. J. Int. – volume: 92 start-page: 633 year: 1987 end-page: 648 ident: bib6 article-title: On the robust estimation of power spectra, coherences, and transfer functions publication-title: J. Geophys. Res. Solid Earth – year: 1967 ident: bib36 article-title: A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the Southwestern United States – volume: 43 start-page: 1157 year: 1978 end-page: 1166 ident: bib14 article-title: Magnetotelluric data analysis; removal of bias publication-title: Geophysics – volume: 28 start-page: 3741 year: 2001 end-page: 3744 ident: bib25 article-title: Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan Back Arc publication-title: Geophys. Res. Lett. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib28 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 107 year: 2002 ident: bib32 article-title: How remote can the far remote reference site for magnetotelluric measurements be? publication-title: J. Geophys. Res. – volume: 77 start-page: 30 year: 2012 end-page: 38 ident: bib20 article-title: Audiomagnetotelluric 3D imaging of the Regis kimberlite pipe, Minas Gerais, Brazil publication-title: J. Appl. Geophys. – volume: 45 start-page: 847 year: 2018 ident: bib31 article-title: Magnetotelluric image of transcrustal magmatic system beneath the Tulu Moye geothermal prospect in the Ethiopian rift publication-title: Geophys. Res. Lett. – volume: 161 start-page: 635 year: 2005 end-page: 652 ident: bib39 article-title: Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme publication-title: Geophys. J. Int. – volume: 38 start-page: 1005 year: 2017 end-page: 1041 ident: bib26 article-title: Magnetotelluric studies for hydrocarbon and geothermal resources: examples from the Asian region publication-title: Surv. Geophys. – volume: 44 start-page: 53 issue: 1 year: 1979 ident: 10.1016/j.cageo.2022.105270_bib13 article-title: Magnetotellurics with a remote magnetic reference publication-title: Geophysics doi: 10.1190/1.1440923 – year: 2003 ident: 10.1016/j.cageo.2022.105270_bib22 – volume: 77 start-page: 30 year: 2012 ident: 10.1016/j.cageo.2022.105270_bib20 article-title: Audiomagnetotelluric 3D imaging of the Regis kimberlite pipe, Minas Gerais, Brazil publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2011.11.010 – year: 1984 ident: 10.1016/j.cageo.2022.105270_bib17 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.cageo.2022.105270_bib28 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – year: 2022 ident: 10.1016/j.cageo.2022.105270_bib11 article-title: Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology publication-title: Nat. Geosci. doi: 10.1038/s41561-022-00981-8 – volume: 189 start-page: 419 issue: 4201 year: 1975 ident: 10.1016/j.cageo.2022.105270_bib24 article-title: Cenozoic tectonics of Asia: Eects of a continental collision publication-title: Science doi: 10.1126/science.189.4201.419 – year: 1982 ident: 10.1016/j.cageo.2022.105270_bib8 – volume: 115 issue: B3 year: 2010 ident: 10.1016/j.cageo.2022.105270_bib7 article-title: India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2009JB006634 – volume: 28 start-page: 3741 issue: 19 year: 2001 ident: 10.1016/j.cageo.2022.105270_bib25 article-title: Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan Back Arc publication-title: Geophys. Res. Lett. doi: 10.1029/2001GL013269 – volume: 72 start-page: 2871 year: 1967 ident: 10.1016/j.cageo.2022.105270_bib12 article-title: Polarization analysis of naturally and artificially geomagnetic micropulsations publication-title: J. Geophys. Res. doi: 10.1029/JZ072i011p02871 – volume: 87 start-page: 173 issue: 1 year: 1986 ident: 10.1016/j.cageo.2022.105270_bib10 article-title: Robust estimation of geomagnetic transfer functions publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1986.tb04552.x – volume: 107 issue: B6 year: 2002 ident: 10.1016/j.cageo.2022.105270_bib32 article-title: How remote can the far remote reference site for magnetotelluric measurements be? publication-title: J. Geophys. Res. – volume: 161 start-page: 635 issue: 3 year: 2005 ident: 10.1016/j.cageo.2022.105270_bib39 article-title: Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2005.02621.x – year: 2012 ident: 10.1016/j.cageo.2022.105270_bib4 – volume: 29 start-page: 423 issue: 5 year: 2001 ident: 10.1016/j.cageo.2022.105270_bib18 article-title: Electric lithosphere of the Slave craton publication-title: Geology doi: 10.1130/0091-7613(2001)029<0423:ELOTSC>2.0.CO;2 – year: 1968 ident: 10.1016/j.cageo.2022.105270_bib16 – volume: 480 start-page: 87 year: 2011 ident: 10.1016/j.cageo.2022.105270_bib1 article-title: Correlation between deep fluids, tremor and creep along the central San Andreas fault publication-title: Nature doi: 10.1038/nature10609 – volume: 132 start-page: 535 issue: 3 year: 1998 ident: 10.1016/j.cageo.2022.105270_bib30 article-title: New equipment and processing for magnetotelluric remote reference observations publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.1998.00440.x – volume: 58 start-page: G0222 issue: 2 year: 2015 ident: 10.1016/j.cageo.2022.105270_bib3 article-title: Processing of noisy magnetotelluric time series from Koyna-Warna seismic region, India: a systematic approach publication-title: Ann. Geophys. doi: 10.4401/ag-6690 – volume: 130 start-page: 475 issue: 2 year: 1997 ident: 10.1016/j.cageo.2022.105270_bib9 article-title: Robust multiple-station magnetotelluric data processing publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1997.tb05663.x – volume: 218 start-page: 1853 issue: 3 year: 2019 ident: 10.1016/j.cageo.2022.105270_bib29 article-title: An automated new pre-selection tool for noisy Magnetotelluric data using the Mahalanobis distance and magnetic field constraints publication-title: Geophys. J. Int. doi: 10.1093/gji/ggz197 – volume: 8 start-page: 296 year: 2020 ident: 10.1016/j.cageo.2022.105270_bib34 article-title: Razorback, an open source Python library for robust processing of magnetotelluric data publication-title: Front. Earth Sci. doi: 10.3389/feart.2020.00296 – volume: 72 start-page: 167 year: 2014 ident: 10.1016/j.cageo.2022.105270_bib19 article-title: MTpy: a Python toolbox for magnetotellurics publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.07.013 – volume: 38 start-page: 1005 year: 2017 ident: 10.1016/j.cageo.2022.105270_bib26 article-title: Magnetotelluric studies for hydrocarbon and geothermal resources: examples from the Asian region publication-title: Surv. Geophys. doi: 10.1007/s10712-017-9439-x – volume: 2 start-page: 641 year: 1991 ident: 10.1016/j.cageo.2022.105270_bib38 article-title: 8. The magnetotelluric method publication-title: Electromag. Methods Appl. Geophys. doi: 10.1190/1.9781560802686.ch8 – volume: 157 start-page: 988 issue: 3 year: 2004 ident: 10.1016/j.cageo.2022.105270_bib5 article-title: Bounded influence magnetotelluric response function estimation publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2004.02203.x – volume: 438 start-page: 78 year: 2005 ident: 10.1016/j.cageo.2022.105270_bib37 article-title: Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data publication-title: Nature doi: 10.1038/nature04154 – volume: 2 start-page: 49 issue: 1 year: 1936 ident: 10.1016/j.cageo.2022.105270_bib21 article-title: On the generalised distance in statistics publication-title: Proc. Natl. Inst. Sci. India – year: 2010 ident: 10.1016/j.cageo.2022.105270_bib2 – volume: 451 start-page: 168 year: 2016 ident: 10.1016/j.cageo.2022.105270_bib27 article-title: Evidence for an extensive intrusive component of the Deccan Large Igneous Province in the Narmada Son Lineament region, India from three dimensional magnetotelluric studies publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2016.07.005 – year: 2005 ident: 10.1016/j.cageo.2022.105270_bib33 – volume: 45 start-page: 847 issue: 12 year: 2018 ident: 10.1016/j.cageo.2022.105270_bib31 article-title: Magnetotelluric image of transcrustal magmatic system beneath the Tulu Moye geothermal prospect in the Ethiopian rift publication-title: Geophys. Res. Lett. – volume: 153 start-page: 409 issue: 2 year: 2003 ident: 10.1016/j.cageo.2022.105270_bib23 article-title: The application of artificial neural networks to magnetotelluric time-series analysis publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2003.01902.x – volume: 39 start-page: 702 issue: 10 year: 2020 ident: 10.1016/j.cageo.2022.105270_bib15 article-title: Quality estimation of magnetotelluric impedance tensors using neural networks publication-title: Lead. Edge doi: 10.1190/tle39100702.1 – volume: 43 start-page: 1157 issue: 6 year: 1978 ident: 10.1016/j.cageo.2022.105270_bib14 article-title: Magnetotelluric data analysis; removal of bias publication-title: Geophysics doi: 10.1190/1.1440885 – volume: 152 start-page: 1 year: 2003 ident: 10.1016/j.cageo.2022.105270_bib35 article-title: Magnetotelluric data processing with a robust statistical procedure having a high breakdown point publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2003.01733.x – year: 1967 ident: 10.1016/j.cageo.2022.105270_bib36 – volume: 92 start-page: 633 issue: B1 year: 1987 ident: 10.1016/j.cageo.2022.105270_bib6 article-title: On the robust estimation of power spectra, coherences, and transfer functions publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/JB092iB01p00633 |
| SSID | ssj0002285 |
| Score | 2.387154 |
| Snippet | The magnetotelluric (MT) data processing is often a time-consuming job due to the manual inspection of the time series and removal of noisy segments. Use of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105270 |
| SubjectTerms | automation computer software Data processing Himalayan region Magnetotellurics Python package SigMT time series analysis |
| Title | SigMT: An open-source Python package for magnetotelluric data processing |
| URI | https://dx.doi.org/10.1016/j.cageo.2022.105270 https://www.proquest.com/docview/3153817626 |
| Volume | 171 |
| WOSCitedRecordID | wos000897755900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0098-3004 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002285 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELagCxIviFMsl4zEW8mqdS6btwotLNeqUovUt8h2nG4LpFWTRbv_nhkfzdIVK0DiJYrS2pHmm3jG45lvCHnJs7xMdZpGZZJWUaKNiHg2LCM8ZDOxVsIoyzP7KT8-5rOZGPuOgo1tJ5DXNT87E-v_CjU8A7CxdPYv4N5OCg_gHkCHK8AO1z8CfrKYf576eB_2xopcfL4_PkeagD7skb9ing6mF36X89q0KywkQXKhPqaL9teudCCYtMBi4Ls_NFZX5sZzYHYZiKPloj2RykZpPh5MDrqzqdaV0ow3sgEYJfx6MdTA4pCdHOJfoQamSziya6rgEfJ2_bKmur4ql9ZnFypYwt57bksvGcNGw8z1Dtkhvp7gzLElKUNPRIjrZI_lqeA9sjd6fzj7sLW4jPE0cKPigMAuZfP4Lr3qdx7Iji22Dsb0DrntdwZ05BC9S66Z-h65-c52Xj6_T44srq_pqKYXUKUOVepRpYAq3UGVIqq0Q_UB-fL2cPrmKPJtMCIJu-E24kopwwd5qZWKwSiAT1Uxw81QCVExmeWSp0kleKk001WpY6zfSrNEIG9RGev4IenVq9o8InQohxkXg1IbrpMqExLdZfiGwecbVLmQ-4QF0RTac8Rjq5JvRUgGXBZWngXKs3Dy3CevtoPWjiLl6r9nQeaFV1XnvRWgJFcPfBEQKmANxIMtWZvVaVPEaLaHYNazx_86-RNyq9P4p6TXbk7NM3JD_2gXzea5V7ifOfuB3Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SigMT%3A+An+open-source+Python+package+for+magnetotelluric+data+processing&rft.jtitle=Computers+%26+geosciences&rft.au=Ajithabh%2C+K.S.&rft.au=Patro%2C+Prasanta+K.&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0098-3004&rft.volume=171&rft_id=info:doi/10.1016%2Fj.cageo.2022.105270&rft.externalDocID=S0098300422002199 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |