ROCAS: Root Cause Analysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation

As Autonomous driving systems (ADS) have transformed our daily life, safety of ADS is of growing significance. While various testing approaches have emerged to enhance the ADS reliability, a crucial gap remains in understanding the accidents causes. Such post-accident analysis is paramount and benef...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM International Conference on Automated Software Engineering : [proceedings] pp. 1620 - 1632
Main Authors: Feng, Shiwei, Ye, Yapeng, Shi, Qingkai, Cheng, Zhiyuan, Xu, Xiangzhe, Cheng, Siyuan, Choi, Hongjun, Zhang, Xiangyu
Format: Conference Proceeding
Language:English
Published: ACM 27.10.2024
Subjects:
ISSN:2643-1572
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As Autonomous driving systems (ADS) have transformed our daily life, safety of ADS is of growing significance. While various testing approaches have emerged to enhance the ADS reliability, a crucial gap remains in understanding the accidents causes. Such post-accident analysis is paramount and beneficial for enhancing ADS safety and reliability. Existing cyber-physical system (CPS) root cause analysis techniques are mainly designed for drones and cannot handle the unique challenges introduced by more complex physical environments and deep learning models deployed in ADS. In this paper, we address the gap by offering a formal definition of ADS root cause analysis problem and introducing Rocas, a novel ADS root cause analysis framework featuring cyber-physical co-mutation. Our technique uniquely leverages both physical and cyber mutation that can precisely identify the accident-trigger entity and pinpoint the misconfiguration of the target ADS responsible for an accident. We further design a differential analysis to identify the responsible module to reduce search space for the misconfiguration. We study 12 categories of ADS accidents and demonstrate the effectiveness and efficiency of Rocas in narrowing down search space and pinpointing the misconfiguration. We also show detailed case studies on how the identified misconfiguration helps understand rationale behind accidents.
AbstractList As Autonomous driving systems (ADS) have transformed our daily life, safety of ADS is of growing significance. While various testing approaches have emerged to enhance the ADS reliability, a crucial gap remains in understanding the accidents causes. Such post-accident analysis is paramount and beneficial for enhancing ADS safety and reliability. Existing cyber-physical system (CPS) root cause analysis techniques are mainly designed for drones and cannot handle the unique challenges introduced by more complex physical environments and deep learning models deployed in ADS. In this paper, we address the gap by offering a formal definition of ADS root cause analysis problem and introducing Rocas, a novel ADS root cause analysis framework featuring cyber-physical co-mutation. Our technique uniquely leverages both physical and cyber mutation that can precisely identify the accident-trigger entity and pinpoint the misconfiguration of the target ADS responsible for an accident. We further design a differential analysis to identify the responsible module to reduce search space for the misconfiguration. We study 12 categories of ADS accidents and demonstrate the effectiveness and efficiency of Rocas in narrowing down search space and pinpointing the misconfiguration. We also show detailed case studies on how the identified misconfiguration helps understand rationale behind accidents.
Author Choi, Hongjun
Xu, Xiangzhe
Shi, Qingkai
Cheng, Zhiyuan
Cheng, Siyuan
Ye, Yapeng
Zhang, Xiangyu
Feng, Shiwei
Author_xml – sequence: 1
  givenname: Shiwei
  surname: Feng
  fullname: Feng, Shiwei
  email: feng292@purdue.edu
  organization: Purdue University,West Lafayette,USA
– sequence: 2
  givenname: Yapeng
  surname: Ye
  fullname: Ye, Yapeng
  email: ye203@purdue.edu
  organization: Purdue University,West Lafayette,USA
– sequence: 3
  givenname: Qingkai
  surname: Shi
  fullname: Shi, Qingkai
  email: qingkaishi@nju.edu.cn
  organization: Nanjing University,The State Key Laboratory for Novel Software Technology,Nanjing,China
– sequence: 4
  givenname: Zhiyuan
  surname: Cheng
  fullname: Cheng, Zhiyuan
  email: cheng443@purdue.edu
  organization: Purdue University,West Lafayette,USA
– sequence: 5
  givenname: Xiangzhe
  surname: Xu
  fullname: Xu, Xiangzhe
  email: xu1415@purdue.edu
  organization: Purdue University,West Lafayette,USA
– sequence: 6
  givenname: Siyuan
  surname: Cheng
  fullname: Cheng, Siyuan
  email: cheng535@purdue.edu
  organization: Purdue University,West Lafayette,USA
– sequence: 7
  givenname: Hongjun
  surname: Choi
  fullname: Choi, Hongjun
  email: hongjun@dgist.ac.kr
  organization: DGIST,Daegu,South Korea
– sequence: 8
  givenname: Xiangyu
  surname: Zhang
  fullname: Zhang, Xiangyu
  email: xyzhang@cs.purdue.edu
  organization: Purdue University,West Lafayette,USA
BookMark eNotjDtPwzAYAA0CiVI6szD4D6T47ZgtCk-pUlGBgaly7M9gqbVRnFTqvycSTHfL3SU6SzkBQteULCkV8pYrQxUjy4lScnKCFkabWhCiKRO1PkUzpgSvqNTsAi1KiR2ZVCpK1Qx9btZt83aHNzkPuLVjAdwkuzuWWHAOuBmHnPI-jwXf9_EQ0xdunIse0lDwIVrcHjvoq9fvKXB2h9tc7cfBDjGnK3Qe7K7A4p9z9PH48N4-V6v100vbrCrLajNUMhjfqaA7CIRR7pTSrnNeOMcBSHA1mGCYl-BFrWRw0CniBOHSBEed93yObv6-EQC2P33c2_64pUQrSbjmv9IxVX0
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3691620.3695530
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798400712487
EISSN 2643-1572
EndPage 1632
ExternalDocumentID 10765037
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
6J9
AAJGR
AAWTH
ABLEC
ACREN
ADYOE
ADZIZ
AFYQB
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a289t-5f9db6f7bef0213c667cbcd4cc3ee0fc8e9f92d5ed4865fceb60c40359fc1cdd3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001353105400130&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jan 15 06:20:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-5f9db6f7bef0213c667cbcd4cc3ee0fc8e9f92d5ed4865fceb60c40359fc1cdd3
OpenAccessLink https://doi.org/10.1145/3691620.3695530
PageCount 13
ParticipantIDs ieee_primary_10765037
PublicationCentury 2000
PublicationDate 2024-Oct.-27
PublicationDateYYYYMMDD 2024-10-27
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-27
  day: 27
PublicationDecade 2020
PublicationTitle IEEE/ACM International Conference on Automated Software Engineering : [proceedings]
PublicationTitleAbbrev ASE
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssib057256116
ssj0051577
Score 2.2796378
Snippet As Autonomous driving systems (ADS) have transformed our daily life, safety of ADS is of growing significance. While various testing approaches have emerged to...
SourceID ieee
SourceType Publisher
StartPage 1620
SubjectTerms Accidents
Autonomous vehicles
Deep learning
Drones
Object recognition
Reliability
Root cause analysis
Safety
Software engineering
Testing
Title ROCAS: Root Cause Analysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation
URI https://ieeexplore.ieee.org/document/10765037
WOSCitedRecordID wos001353105400130&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwGLRoxcBUHkW85YHV0NqxXbNVgYqpVAWkMlXJ589SBxqUJpX499h5gBgY2CJPkV_3ne27I-RaYWrQAWcONGd-UiQscUawlIMyQoKyFqqwCT2djhYLM2vE6pUWBhGrx2d4Ez6ru3ybQRmOyvwK176gELpDOlqrWqzVTh6pPXgPQ61Tb8Mep7VuvHyGkbwVyhdC3HNUZUJSzq8wlQpLJr1__sU-6f-o8ujsG28OyA6uD0mvjWWgzSo9Im_zp3j8fEfnWVbQOCk3SFvrEZo5Oi6LIGTwjJ_e56twnkDHACFbtNjQ7Sqh8WeKOZs1A0jjjL2X9YV9n7xOHl7iR9YkKLDEE6mCSWeCzE6n6DyWC1BKQwo2AhCIAwcjNM5wK9FGIyUdYKoGEAVXPwdDsFYck-46W-MJoVY6KXRkOXiCZQYyUS74ukSDxAYKg6ekH7pq-VGbZCzbXjr7o_2c7HFfHwQY4PqCdIu8xEuyC9titcmvqqH9AoR4pX0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwGLSgIMFUHkW88cBqaJPYrtmqQFVEKVUpEkxV8vmz1IEGpUkl_j12HiAGBrbIU-TXfWf77gi5FBgrNOAxA9JjdlJELDLKZ7EHQvkchNZQhE3I0aj7-qrGlVi90MIgYvH4DK_cZ3GXrxPI3VGZXeHSFhS-XCcbPLDEp5Rr1dOHSwvfHVftlBuxRWopKzefTsCvfWFLIc-yVKFcVs6vOJUCTfrNf_7HDmn96PLo-BtxdskaLvZIsw5moNU63Sdvk6ew93xDJ0mS0TDKl0hr8xGaGNrLMydlsJyf3qZzd6JAewAuXTRb0tU8ouFnjCkbV0NIw4S95-WVfYu89O-m4YBVGQosslQqY9woJ7STMRqL5j4IISEGHQD4iG0DXVRGeZqjDrqCG8BYtCFwvn4GOqC1f0Aai2SBh4RqbrgvA-2BpViqzSNhnLNL0I60IzF4RFquq2YfpU3GrO6l4z_aL8jWYPo4nA3vRw8nZNuz1YIDBU-ekkaW5nhGNmGVzZfpeTHMX09YqMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=ROCAS%3A+Root+Cause+Analysis+of+Autonomous+Driving+Accidents+via+Cyber-Physical+Co-mutation&rft.au=Feng%2C+Shiwei&rft.au=Ye%2C+Yapeng&rft.au=Shi%2C+Qingkai&rft.au=Cheng%2C+Zhiyuan&rft.date=2024-10-27&rft.pub=ACM&rft.eissn=2643-1572&rft.spage=1620&rft.epage=1632&rft_id=info:doi/10.1145%2F3691620.3695530&rft.externalDocID=10765037