ITG: Trace Generation via Iterative Interaction between LLM Query and Trace Checking
Due to the complexity of linear temporal logic (LTL) trace generation (PSPACE-Complete), existing neural network-based approaches will fail as the formula sizes increase. Recently, large language models (LLMs) have demonstrated remarkable reasoning capabilities, benefiting from efficient training on...
Uloženo v:
| Vydáno v: | IEEE/ACM International Conference on Software Engineering: New Ideas and Emerging Technologies Results (Online) s. 11 - 15 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
ACM
14.04.2024
|
| Témata: | |
| ISSN: | 2832-7632 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to the complexity of linear temporal logic (LTL) trace generation (PSPACE-Complete), existing neural network-based approaches will fail as the formula sizes increase. Recently, large language models (LLMs) have demonstrated remarkable reasoning capabilities, benefiting from efficient training on hyper-scale data. Inspired by this, we propose an iterative interaction framework for applying LLMs, exemplified by ChatGPT, to generate a trace satisfying a given LTL formula. The key insight behind it is to transfer the powerful reasoning capabilities of LLM to LTL trace generation via iterative interaction between LLM reasoning and logical reasoning. Preliminary results show that compared with the state-of-the-art approach, the accuracy is relatively improved by 9.7%-23.4%. Besides, we show that our framework is able to produce heuristics for new tasks, which provides a reference for other reasoning-heavy tasks requiring heuristics. |
|---|---|
| AbstractList | Due to the complexity of linear temporal logic (LTL) trace generation (PSPACE-Complete), existing neural network-based approaches will fail as the formula sizes increase. Recently, large language models (LLMs) have demonstrated remarkable reasoning capabilities, benefiting from efficient training on hyper-scale data. Inspired by this, we propose an iterative interaction framework for applying LLMs, exemplified by ChatGPT, to generate a trace satisfying a given LTL formula. The key insight behind it is to transfer the powerful reasoning capabilities of LLM to LTL trace generation via iterative interaction between LLM reasoning and logical reasoning. Preliminary results show that compared with the state-of-the-art approach, the accuracy is relatively improved by 9.7%-23.4%. Besides, we show that our framework is able to produce heuristics for new tasks, which provides a reference for other reasoning-heavy tasks requiring heuristics. |
| Author | Fang, Weiyuan Ye, Rongzhen Luo, Weilin Wan, Hai Qiu, Junming Liu, Yanan |
| Author_xml | – sequence: 1 givenname: Weilin surname: Luo fullname: Luo, Weilin email: luowlin5@mail.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou,China – sequence: 2 givenname: Weiyuan surname: Fang fullname: Fang, Weiyuan email: fangwy3@mail2.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou,China – sequence: 3 givenname: Junming surname: Qiu fullname: Qiu, Junming email: qiujm9@mail2.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou,China – sequence: 4 givenname: Hai surname: Wan fullname: Wan, Hai email: wanhai@mail.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou,China – sequence: 5 givenname: Yanan surname: Liu fullname: Liu, Yanan email: liuyn56@mail2.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou,China – sequence: 6 givenname: Rongzhen surname: Ye fullname: Ye, Rongzhen email: yerzh@mail2.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou,China |
| BookMark | eNotjEtLw0AUhUdRsNas3biYP5A674c7KRoDERHiutxJbnRQp5LESv9909rNeXAO3yU5S-uEhFxztuBc6VtppFfWLPZurT8hmbfeKcYs05OckplwUuTWSHFBsmGIgWmtreJezUhd1sUdrXtokBaYsIcxrhPdRKDleGgbpGXax-awBBz_EBOtqmf6-ov9lkJqj4DlBzafMb1fkfMOvgbMjj4nb48P9fIpr16Kcnlf5SCcH3PdGatCCKqB4DoHQlptoe0Y050GAyF4IyauM1yAkWhw-jAGvlGyFa2Xc3Lzz42IuPrp4zf02xVnVhgvvdwBspJSaw |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1145/3639476.3639779 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798400705007 |
| EISSN | 2832-7632 |
| EndPage | 15 |
| ExternalDocumentID | 10726939 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities, Sun Yat-sen University grantid: 23ptpy31 funderid: 10.13039/100007844 – fundername: Humanities and Social Science Research Project of Ministry of Education grantid: 18YJCZH006 funderid: 10.13039/100009950 – fundername: National Natural Science Foundation of China grantid: 62276284,61976232,51978675 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-a289t-5f674bbb4cab8f8a23757adf005f5a6abb962ace8612a63e6e8a200a9c43d2d93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001234856600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 03:00:32 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a289t-5f674bbb4cab8f8a23757adf005f5a6abb962ace8612a63e6e8a200a9c43d2d93 |
| OpenAccessLink | https://dl.acm.org/doi/pdf/10.1145/3639476.3639779 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10726939 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-April-14 |
| PublicationDateYYYYMMDD | 2024-04-14 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE/ACM International Conference on Software Engineering: New Ideas and Emerging Technologies Results (Online) |
| PublicationTitleAbbrev | ICSE-NIER |
| PublicationYear | 2024 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssib055574194 ssj0003211718 |
| Score | 2.2567515 |
| Snippet | Due to the complexity of linear temporal logic (LTL) trace generation (PSPACE-Complete), existing neural network-based approaches will fail as the formula... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 11 |
| SubjectTerms | Accuracy Chatbots Cognition Complexity theory Iterative methods large language model Large language models linear temporal logic Logic satisfiability checking Software engineering Synthetic data trace checking trace generation Training |
| Title | ITG: Trace Generation via Iterative Interaction between LLM Query and Trace Checking |
| URI | https://ieeexplore.ieee.org/document/10726939 |
| WOSCitedRecordID | wos001234856600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2EePCkRozf6cFrEfpdr0SUBAkmmHAjbbeNXBaDLIn_3ml3kZMHT9vsbppm2s5rp_NeEboXmnHnuSEANppwaxzR0WkindWa9x2lPuvMjtVkoudzM23I6pkLE0LIyWehm4r5LL9Y-SqFymCGKyoNMy3UUkrWZK3d4BFCADg2gyu5YQZbG3C8jZxPn4sHBmjMleymp8q5W_v7VDKcDI__2ZAT1NkT8_D0F3JO0UEoz9BsNHt-xAA68LFWkU7GxtulxaOsmQwODefIX01iwE1uFh6PX_FbFdbf2JZFU8HgI_gUPe-g9-HTbPBCmssSiIU904aIKBV3znFvnY7aUqaEskWEWRaFldY5IynUo2FJYyULMsA_vZ41nrOCFoado3a5KsMFwlRG5xk1UTHNhdPGBWUUC4XX1homLlEnmWTxWethLHbWuPrj_TU6orAUSGcwfX6D2pt1FW7Rod9ull_ru9yLP-JknFo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTfSkRoy_7cHrEPq7XokIcRBMZsKNtF0XuQyCQOJ_72s35OTB05ptaZrX9n3t6_u-IvTIFWXWMZ0A2KiEGW0TVViVCGuUYh1LiIs6s6kcjdRkosc1WT1yYbz3MfnMt0IxnuXnc7cOoTKY4ZIITfU-OuCMkXZF19oOH845wGM9vIIjprC5AddbC_p0GH-igMdMilZ4ypi9tbtRJQJK7-SfTTlFzR01D49_QecM7fnyHGWD7PUZA-zAx0pHOpgbb2YGD6JqMrg0HGN_FY0B19lZOE2H-H3tl9_YlHldQffTuxA_b6KP3kvW7Sf1dQmJgV3TKuGFkMxay5yxqlCGUMmlyQuYZwU3wlirBYF6FCxqjKBeePin3TbaMZqTXNML1Cjnpb9EmIjCOkp0Iali3CptvdSS-twpYzTlV6gZTDJdVIoY0601rv94_4CO-tkwnaaD0dsNOiawMAgnMh12ixqr5drfoUO3Wc2-lvexR38ANeefoQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Software+Engineering%3A+New+Ideas+and+Emerging+Technologies+Results+%28Online%29&rft.atitle=ITG%3A+Trace+Generation+via+Iterative+Interaction+between+LLM+Query+and+Trace+Checking&rft.au=Luo%2C+Weilin&rft.au=Fang%2C+Weiyuan&rft.au=Qiu%2C+Junming&rft.au=Wan%2C+Hai&rft.date=2024-04-14&rft.pub=ACM&rft.eissn=2832-7632&rft.spage=11&rft.epage=15&rft_id=info:doi/10.1145%2F3639476.3639779&rft.externalDocID=10726939 |