Canonical Polymorphisms of Ramsey Structures and the Unique Interpolation Property
Constraint satisfaction problems for first-order reducts of finitely bounded homogeneous structures form a large class of computational problems that might exhibit a complexity dichotomy, P versus NP-complete. A powerful method to obtain polynomial-time tractability results for such CSPs is a certai...
Uloženo v:
| Vydáno v: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
29.06.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Constraint satisfaction problems for first-order reducts of finitely bounded homogeneous structures form a large class of computational problems that might exhibit a complexity dichotomy, P versus NP-complete. A powerful method to obtain polynomial-time tractability results for such CSPs is a certain reduction to polynomial-time tractable finite-domain CSPs de-fined over k-types, for a sufficiently large k. We give sufficient conditions when this method can be applied and illustrate how to use the general results to prove a new complexity dichotomy for first-order expansions of the basic relations of the spatial reasoning formalism RCC5. |
|---|---|
| DOI: | 10.1109/LICS52264.2021.9470683 |