Inapproximability of Unique Games in Fixed-Point Logic with Counting
We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC- inexpressibility results for Unique Games: the existence of a \left( {\frac{1}{2},\frac{1}{3} + \delta } \right)-inapproximability g...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science S. 1 - 13 |
|---|---|
| 1. Verfasser: | |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
29.06.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC- inexpressibility results for Unique Games: the existence of a \left( {\frac{1}{2},\frac{1}{3} + \delta } \right)-inapproximability gap, and inapproximability to within any constant factor. Previous recent work has established similar FPC-inapproximability results for a small handful of other problems. Our construction builds upon some of these ideas, but contains a novel technique. While most FPC-inexpressibility results are based on variants of the CFI-construction, ours is significantly different. |
|---|---|
| DOI: | 10.1109/LICS52264.2021.9470706 |