Inapproximability of Unique Games in Fixed-Point Logic with Counting

We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC- inexpressibility results for Unique Games: the existence of a \left( {\frac{1}{2},\frac{1}{3} + \delta } \right)-inapproximability g...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 1 - 13
Main Author: Tucker-Foltz, Jamie
Format: Conference Proceeding
Language:English
Published: IEEE 29.06.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC- inexpressibility results for Unique Games: the existence of a \left( {\frac{1}{2},\frac{1}{3} + \delta } \right)-inapproximability gap, and inapproximability to within any constant factor. Previous recent work has established similar FPC-inapproximability results for a small handful of other problems. Our construction builds upon some of these ideas, but contains a novel technique. While most FPC-inexpressibility results are based on variants of the CFI-construction, ours is significantly different.
AbstractList We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC- inexpressibility results for Unique Games: the existence of a \left( {\frac{1}{2},\frac{1}{3} + \delta } \right)-inapproximability gap, and inapproximability to within any constant factor. Previous recent work has established similar FPC-inapproximability results for a small handful of other problems. Our construction builds upon some of these ideas, but contains a novel technique. While most FPC-inexpressibility results are based on variants of the CFI-construction, ours is significantly different.
Author Tucker-Foltz, Jamie
Author_xml – sequence: 1
  givenname: Jamie
  surname: Tucker-Foltz
  fullname: Tucker-Foltz, Jamie
  email: jtuckerfoltz@gmail.com
  organization: Harvard University
BookMark eNotj9FKwzAUQCMoqLNfIEh-oPUmvUmTR6luFgoKuufRNjczsqV17XD7ewfu6bwdzrlll7GPxNiDgEwIsI91VX4oKTVmEqTILBZQgL5giS2M0FohGqv0NUvG8RsApCkEoL1hz1VshmHXH8K2acMmTEfee76M4WdPfNFsaeQh8nk4kEvf-xAnXvfr0PHfMH3xst_HKcT1HbvyzWak5MwZW85fPsvXtH5bVOVTnTbS2ClFKqxHYdEgWEsecwPWqU56r7pOS1RICh3JohWnZiRwglrnXeuUAczzGbv_9wYiWg27U_PuuDq_5n-mwkw0
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470706
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470706
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-4e79f419484099ef43809d5c2ff5cc62454e54de27b11664e0d1ebdfdbd580433
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-4e79f419484099ef43809d5c2ff5cc62454e54de27b11664e0d1ebdfdbd580433
PageCount 13
ParticipantIDs ieee_primary_9470706
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.177984
Snippet We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Approximation algorithms
Complexity theory
Computer science
Games
Graph theory
Linear algebra
Title Inapproximability of Unique Games in Fixed-Point Logic with Counting
URI https://ieeexplore.ieee.org/document/9470706
WOSCitedRecordID wos000947350400076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eCpaiu-ycGjaZvdbB7narUgpaCF3spuMoE9uCt1K_Xfu0nXiuDFWwiEwEyGeWTm-wBupBUKnYqpk4mlnEtOM23rrDWN4jgTsVM8DWQTcjpVi4WeteB2NwuDiKH5DPt-Gf7ybWnWvlQ20FzWL1TswZ6Ucjurtaun-Mi_jnabIWA21IOnyejZRxe-chKxfnP4F4tKcCLjzv-uP4TezzQeme38zBG0sDiGzjcdA2msswt3kyIghG_y1y349icpHZkHhFby4LthSV6Qcb5BS2dlXlTEEy0b4kuxZNRwRvRgPr5_GT3ShiSBpnWuVFGOUjvONPeZmkbnEeS1TUzkXGKMiHjCMeEWI5kxJgTHoWWYWWczmyiPXnYC7aIs8BSIMDEqY0XKpOPCqVpNxjhU1jme1dZ0Bl0vlOXbFgdj2cjj_O_tCzjwcvdtVZG-hHa1WuMV7JuPKn9fXQflfQHCtZsf
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61Cnqq2opvc_Dots3ubB7nam2xloIt9FZ2kwnswV2pW6n_3s12rQhevIVAIMxkmEdmvo-QW2G4RCsDz4rQeAACvFiZImuN_CCIeWAlRCXZhBiP5XyuJjVyt52FQcSy-Qzbbln-5ZtMr1yprKNAFC-U75DdEMBnm2mtbUXFxf5FvFuNAbOu6oyGvRcXX7jaic_a1fFfPCqlG-k3_neBQ9L6mcejk62nOSI1TI9J45uQgVb22ST3w7TECF8nrxv47U-aWTorMVrpo-uHpUlK-8kajTfJkjSnjmpZU1eMpb2KNaJFZv2HaW_gVTQJXlRkS7kHKJQFpsDlagqtw5BXJtS-taHW3IcQMASDvogZ4xywaxjGxprYhNLhl52QepqleEoo1wFKbXjEhAVuZaEorS1KYy3EhT2dkaYTyuJtg4SxqORx_vf2DdkfTJ9Hi9Fw_HRBDpwOXJOVry5JPV-u8Irs6Y88eV9el4r8AgPrnmY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Inapproximability+of+Unique+Games+in+Fixed-Point+Logic+with+Counting&rft.au=Tucker-Foltz%2C+Jamie&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470706&rft.externalDocID=9470706