Inapproximability of Unique Games in Fixed-Point Logic with Counting

We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC- inexpressibility results for Unique Games: the existence of a \left( {\frac{1}{2},\frac{1}{3} + \delta } \right)-inapproximability g...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13
Hlavní autor: Tucker-Foltz, Jamie
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC- inexpressibility results for Unique Games: the existence of a \left( {\frac{1}{2},\frac{1}{3} + \delta } \right)-inapproximability gap, and inapproximability to within any constant factor. Previous recent work has established similar FPC-inapproximability results for a small handful of other problems. Our construction builds upon some of these ideas, but contains a novel technique. While most FPC-inexpressibility results are based on variants of the CFI-construction, ours is significantly different.
AbstractList We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC- inexpressibility results for Unique Games: the existence of a \left( {\frac{1}{2},\frac{1}{3} + \delta } \right)-inapproximability gap, and inapproximability to within any constant factor. Previous recent work has established similar FPC-inapproximability results for a small handful of other problems. Our construction builds upon some of these ideas, but contains a novel technique. While most FPC-inexpressibility results are based on variants of the CFI-construction, ours is significantly different.
Author Tucker-Foltz, Jamie
Author_xml – sequence: 1
  givenname: Jamie
  surname: Tucker-Foltz
  fullname: Tucker-Foltz, Jamie
  email: jtuckerfoltz@gmail.com
  organization: Harvard University
BookMark eNotj9FKwzAUQCMoqLNfIEh-oPUmvUmTR6luFgoKuufRNjczsqV17XD7ewfu6bwdzrlll7GPxNiDgEwIsI91VX4oKTVmEqTILBZQgL5giS2M0FohGqv0NUvG8RsApCkEoL1hz1VshmHXH8K2acMmTEfee76M4WdPfNFsaeQh8nk4kEvf-xAnXvfr0PHfMH3xst_HKcT1HbvyzWak5MwZW85fPsvXtH5bVOVTnTbS2ClFKqxHYdEgWEsecwPWqU56r7pOS1RICh3JohWnZiRwglrnXeuUAczzGbv_9wYiWg27U_PuuDq_5n-mwkw0
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470706
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470706
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-4e79f419484099ef43809d5c2ff5cc62454e54de27b11664e0d1ebdfdbd580433
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-4e79f419484099ef43809d5c2ff5cc62454e54de27b11664e0d1ebdfdbd580433
PageCount 13
ParticipantIDs ieee_primary_9470706
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.177984
Snippet We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Approximation algorithms
Complexity theory
Computer science
Games
Graph theory
Linear algebra
Title Inapproximability of Unique Games in Fixed-Point Logic with Counting
URI https://ieeexplore.ieee.org/document/9470706
WOSCitedRecordID wos000947350400076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4cHT1E38TQ4ezbZ2adKcp9OBjIEOdhtt8gI92MrsZP735rV1InjxFgIh8JLwfuR93wdwM0xknEqHXAhjuHAm4Wk8Qu59W5D4-0B8H5XYhJrN4uVSz1twu8PCIGLVfIZ9GlZ_-bYwGyqVDbRQ_obKPdhTStVYrV09hSJ_H-02IOBgqAdP0_EzRRdUOQmDfrP4l4pK5UQmnf9tfwi9HzQem-_8zBG0MD-GzrccA2teZxfupnnFEL7NXmvy7U9WOLaoGFrZA3XDsixnk2yLls-LLC8ZCS0bRqVYNm40I3qwmNy_jB95I5LAE58rlVyg0k4EWlCmptERg7y2kQmdi4yRoYgERsJiqNIgkFLg0AaYWmdTG8XEXnYC7bzI8RSYDxWNVFhzuIyM1WlqY588J4mT1qdFZ9Alo6zeah6MVWOP87-nL-CA7E5tVaG-hHa53uAV7JuPMntfX1eH9wWxMZpY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfRUtRXf5uDRtM02m92cq7XFWgq20FvZTSawB3elbqX-e5PdtSJ48RYCgTAzYR6Z-T6A224kwlgYpJwrRblREY3DHlLr21hk7cHhfRRkE8FkEi4WclqDu-0sDCIWzWfYdsviL19nau1KZR3JA2uhYgd2fc49Vk5rbSsqLva38W41Bsy6sjMe9V9cfOFqJx5rV8d_8agUbmTQ-N8FDqH1M49HpltPcwQ1TI-h8U3IQKr32YT7UVpghG-S1xJ--5NkhswLjFby6PphSZKSQbJBTadZkubEUS0r4oqxpF-xRrRgPniY9Ye0okmgkc2WcsoxkIYzyV2uJtE4DHmpfeUZ4yslPO5z9LlGL4gZE4JjVzOMtdGx9kOHX3YC9TRL8RSIDRaVCLBEcekpLeNYhzZ9jiIjtE2MzqDphLJ8K5EwlpU8zv_evoH94ex5vByPJk8XcOB04JqsPHkJ9Xy1xivYUx958r66LhT5BelEnZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Inapproximability+of+Unique+Games+in+Fixed-Point+Logic+with+Counting&rft.au=Tucker-Foltz%2C+Jamie&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470706&rft.externalDocID=9470706