The Laplace Mechanism has optimal utility for differential privacy over continuous queries

Differential Privacy protects individuals' data when statistical queries are published from aggregated databases: applying "obfuscating" mechanisms to the query results makes the released information less specific but, unavoidably, also decreases its utility. Yet it has been shown tha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 12
Hlavní autoři: Fernandes, Natasha, McIver, Annabelle, Morgan, Carroll
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Differential Privacy protects individuals' data when statistical queries are published from aggregated databases: applying "obfuscating" mechanisms to the query results makes the released information less specific but, unavoidably, also decreases its utility. Yet it has been shown that for discrete data (e.g. counting queries), a mandated degree of privacy and a reasonable interpretation of loss of utility, the Geometric obfuscating mechanism is optimal: it loses as little utility as possible [Ghosh et al. [1]].For continuous query results however (e.g. real numbers) the optimality result does not hold. Our contribution here is to show that optimality is regained by using the Laplace mechanism for the obfuscation.The technical apparatus involved includes the earlier discrete result [Ghosh op. cit.], recent work on abstract channels and their geometric representation as hyper-distributions [Alvim et al. [2]], and the dual interpretations of distance between distributions provided by the Kantorovich-Rubinstein Theorem.
AbstractList Differential Privacy protects individuals' data when statistical queries are published from aggregated databases: applying "obfuscating" mechanisms to the query results makes the released information less specific but, unavoidably, also decreases its utility. Yet it has been shown that for discrete data (e.g. counting queries), a mandated degree of privacy and a reasonable interpretation of loss of utility, the Geometric obfuscating mechanism is optimal: it loses as little utility as possible [Ghosh et al. [1]].For continuous query results however (e.g. real numbers) the optimality result does not hold. Our contribution here is to show that optimality is regained by using the Laplace mechanism for the obfuscation.The technical apparatus involved includes the earlier discrete result [Ghosh op. cit.], recent work on abstract channels and their geometric representation as hyper-distributions [Alvim et al. [2]], and the dual interpretations of distance between distributions provided by the Kantorovich-Rubinstein Theorem.
Author McIver, Annabelle
Fernandes, Natasha
Morgan, Carroll
Author_xml – sequence: 1
  givenname: Natasha
  surname: Fernandes
  fullname: Fernandes, Natasha
  organization: Macquarie University,Department of Computing,Sydney
– sequence: 2
  givenname: Annabelle
  surname: McIver
  fullname: McIver, Annabelle
  organization: Macquarie University,Department of Computing,Sydney
– sequence: 3
  givenname: Carroll
  surname: Morgan
  fullname: Morgan, Carroll
  organization: UNSW,School of Computer Science and Engineering,Sydney
BookMark eNotUMlKxEAUbEFBHfMFgvQPZOx9OUpwGYh4cLx4GXo6L6Qlm93JQP7egHOqogqKqrpFl_3QA0IPlGwpJfax3BWfkjEltowwurVCE03NBcqsNlQpKYSxUl2jLKUfQggzmhJhb9D3vgFcurF1HvA7-Mb1IXW4cQkP4xQ61-J5Cm2YFlwPEVehriFCP4XVGGM4Ob_g4QQR-2EV-3mYE_6dIQZId-iqdm2C7Iwb9PXyvC_e8vLjdVc8lbljxk650LWUR6mpEJVVrLKCM06lX6kylDHjhRXrgso67cEBV-ZIwQDVYLkwFd-g-__cAACHtVTn4nI4P8D_AAchVII
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470718
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 12
ExternalDocumentID 9470718
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-47f55b57144d962d9432315c62d681228c494665d9a7ceae368b1e8e17e9348d3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:23:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-47f55b57144d962d9432315c62d681228c494665d9a7ceae368b1e8e17e9348d3
PageCount 12
ParticipantIDs ieee_primary_9470718
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.3140094
Snippet Differential Privacy protects individuals' data when statistical queries are published from aggregated databases: applying "obfuscating" mechanisms to the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms abstract channels
Computer science
Differential privacy
hyper-distributions
Laplace mechanism
optimal mechanisms
quantitative information flow
utility
Title The Laplace Mechanism has optimal utility for differential privacy over continuous queries
URI https://ieeexplore.ieee.org/document/9470718
WOSCitedRecordID wos000947350400081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na8JAEF1UeujJtlr6zR56bDQfu9nds1RasCK0BelFNrsTGtAoxgj9992J0VLopbclEEJmdjNvJu_NEHLv21CaFELPJAw8Zhn3dATSkzFImfixZdpUwybEeCynUzVpkIeDFgYAKvIZ9HBZ_cu3S1NiqayvmHARUTZJUwix02od6imI_B3arUXAga_6o-fBK6ILrJyEQa---dcUlSqIDNv_e_wJ6f6o8ejkEGdOSQPyM9Lej2Og9enskA_ncjrSFcuKvgBKerNiQT91QZfuw7DQc-p2GcJu6pAq3Y9GcUd8TlfrbKvNF0VCJ0X6epaXy7KgLmpgLt0l78PHt8GTV49O8LTLoDYeEynnCRcuXbIqDq1ikQNy3LglNhxz_mHYWJ5bpYUBDVEskwAkBAJUxKSNzkkrX-ZwQWjq3i5koFKTRM4AieK-FSpMg5hzEQXmknTQVLPVrjvGrLbS1d-Xr8kxegPJVqG6Ia3NuoRbcmS2m6xY31Uu_Qb3yaNt
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa8IwEA7ODbYnt-nY7-Vhj6u2adImzzKZrIowB7IXSZMrK2graoX990tqdQz2srdQKLR3Se-76_fdIfToasJVAsRRMQWHasoc6QN3eACcx26gqVTlsIlwOOSTiRjV0NNeCwMAJfkM2nZZ_svXuSpsqawjaGgiIj9Ah4xS4m3VWvuKisX-Bu9WMmDPFZ2o332z-MLWTojXrm7_NUelDCO9xv8e4BS1fvR4eLSPNGeoBtk5auwGMuDqfDbRh3E6jmTJs8IDsKLedDXHn3KFc_NpmMsZNvvMAm9ssCreDUcxh3yGF8t0I9UXtpRObAnsaVbkxQqbuGGz6RZ67z2Puy9ONTzBkSaHWjs0TBiLWWgSJi0CogX1DZRjyixtyzHjIWpbyzMtZKhAgh_w2AMOXgjCp1z7F6ie5RlcIpyYtyMURKJi3xggFszVoSCJFzAW-p66Qk1rquli2x9jWlnp-u_LD-j4ZTyIplF_-HqDTqxnLPWKiFtUXy8LuENHarNOV8v70r3fphemtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=The+Laplace+Mechanism+has+optimal+utility+for+differential+privacy+over+continuous+queries&rft.au=Fernandes%2C+Natasha&rft.au=McIver%2C+Annabelle&rft.au=Morgan%2C+Carroll&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FLICS52264.2021.9470718&rft.externalDocID=9470718