Zero-one laws for provability logic: Axiomatizing validity in almost all models and almost all frames

It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13
Hlavní autor: Verbrugge, Rineke
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. For modal logics, limit behavior for models and frames may differ. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5. They also proposed zero-one laws for the corresponding classes of frames, but their zero-one law for K-frames has since been disproved.In this paper, we prove zero-one laws for provability logic with respect to both model and frame validity. Moreover, we axiomatize validity in almost all irreflexive transitive finite models and in almost all irreflexive transitive finite frames, leading to two different axiom systems. In the proofs, we use a combinatorial result by Kleitman and Rothschild about the structure of almost all finite partial orders. On the way, we also show that a previous result by Halpern and Kapron about the axiomatization of almost sure frame validity for S4 is not correct. Finally, we consider the complexity of deciding whether a given formula is almost surely valid in the relevant finite models and frames.
AbstractList It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. For modal logics, limit behavior for models and frames may differ. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5. They also proposed zero-one laws for the corresponding classes of frames, but their zero-one law for K-frames has since been disproved.In this paper, we prove zero-one laws for provability logic with respect to both model and frame validity. Moreover, we axiomatize validity in almost all irreflexive transitive finite models and in almost all irreflexive transitive finite frames, leading to two different axiom systems. In the proofs, we use a combinatorial result by Kleitman and Rothschild about the structure of almost all finite partial orders. On the way, we also show that a previous result by Halpern and Kapron about the axiomatization of almost sure frame validity for S4 is not correct. Finally, we consider the complexity of deciding whether a given formula is almost surely valid in the relevant finite models and frames.
Author Verbrugge, Rineke
Author_xml – sequence: 1
  givenname: Rineke
  surname: Verbrugge
  fullname: Verbrugge, Rineke
  email: L.C.Verbrugge@rug.nl
  organization: University of Groningen,Department of Artificial Intelligence
BookMark eNpNkMtKxDAARSMoqGO_QJD8QMe807gbio-Bggt142ZImmSIpM2QlNHx6604C1eHey-cxb0Ep2MaHQA3GC0xRuq2W7cvnBDBlgQRvFRMIiHECaiUbLAQnLFGcXEOqlI-EEKkkRgxdQHcu8upnl0w6s8Cfcpwl9NemxDDdIAxbUN_B1dfIQ16Ct9h3MK9jsH-jmGEOg6pTDMiHJJ1sUA92v-tz3pw5QqceR2Lq45cgLeH-9f2qe6eH9ftqqs1adRUM-EFkoYRRiQ1vfAYY4OF7SW3iljqtezn5ATllkuOLOG9sZQ4jqjxyNIFuP7zBufcZpfDoPNhczyD_gBjNFke
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470666
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470666
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-46f607b424273bc6f111b16dc75d92d3fa7c6dce635d5750d25cbd32e503bf0d3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-46f607b424273bc6f111b16dc75d92d3fa7c6dce635d5750d25cbd32e503bf0d3
PageCount 13
ParticipantIDs ieee_primary_9470666
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.178162
Snippet It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Complexity theory
Computational modeling
Computer science
Finite element analysis
Title Zero-one laws for provability logic: Axiomatizing validity in almost all models and almost all frames
URI https://ieeexplore.ieee.org/document/9470666
WOSCitedRecordID wos000947350400063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMAfc3jwNHUTv8nBo9m6JG0abzIcCjIGKgwvo_koDGYra-fXX-9LV6eCF09tE9qGlybvl9f38gDOQmZjoZygCMuCCqZTqlwoaMy5toHTWipbJZuQo1E8mahxA87XsTDOucr5zHX9afUv3-Zm6U1lPSWkx-0N2JBSrmK11vYUT_5Iu3UQcD9QvdubwZ2nC285Yf1uffOvLCqVEhm2_vf6beh8R-OR8VrP7EDDZbvQ-krHQOrR2Qb36BY5zTNH5slrQZBGiTcYrDbififVJHdBLt9muafUD3wWwc9sZn3lLCPJ_CkvSjzMSZUepyBJZn-Wpt6Pq-jAw_DqfnBN6ywKNMHFVElFlEaB1AJ1seTaRCnObrofWSNDq5jlaSINXjkkD4vsFlgWGm05c2HAdRpYvgfNDNu-D0RFScwNV2FgmIh5hGNfotxj1PIIGrE-gLaX2vR5tVHGtBbY4d_FR7DlO8b7XTF1DM1ysXQnsGleylmxOK169xMwLaXv
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMDDnIKepm7itzl4tFubpE3jTcSx4RwDJwwvo_koFGYra-fXX-9LV6eCF09NE1rCS5P3y-t7eQid-0SHTBjmACwzhxEZO8L4zAkpldo1UnKhy2QTfDgMJxMxqqGLVSyMMaZ0PjNtWyz_5etMLayprCMYt7i9htZ9xoi3jNZaWVQs-wPvVmHAnis6g_71veULazshXrt6_FcelVKNdBv_68A2an3H4-HRStPsoJpJd1HjKyEDruZnE5lHM8-cLDV4Fr3mGHgUW5PB8ijud1wuc5f46i3JLKd-wLswfGiJto1JiqPZU5YXcJnhMkFOjqNU_6yNrSdX3kIP3Zvxdc-p8ig4EWynCocFceByyUAbcypVEMP6Jr1AK-5rQTSNI67gzgB7aKA3VxNfSU2J8V0qY1fTPVRPoe_7CIsgCqmiwncVYSENYPZzkHsIeh5QI5QHqGmlNn1eHpUxrQR2-Hf1Gdrsje8G00F_eHuEtuwgWS8sIo5RvZgvzAnaUC9Fks9Py5H-BP8fqTY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Zero-one+laws+for+provability+logic%3A+Axiomatizing+validity+in+almost+all+models+and+almost+all+frames&rft.au=Verbrugge%2C+Rineke&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470666&rft.externalDocID=9470666