Emotion Classification In Software Engineering Texts: A Comparative Analysis of Pre-trained Transformers Language Models

Emotion recognition in software engineering texts is critical for understanding developer expressions and improving collaboration. This paper presents a comparative analysis of state-of-the-art Pretrained Language Models (PTMs) for fine-grained emotion classification on two benchmark datasets from G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 IEEE/ACM International Workshop on Natural Language-Based Software Engineering (NLBSE) S. 73 - 80
1. Verfasser: Imran, Mia Mohammad
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: ACM 20.04.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Emotion recognition in software engineering texts is critical for understanding developer expressions and improving collaboration. This paper presents a comparative analysis of state-of-the-art Pretrained Language Models (PTMs) for fine-grained emotion classification on two benchmark datasets from GitHub and Stack Overflow We evaluate six transformer models - BERT, RoBERTa, ALBERT, DeBERTa, CodeBERT and GraphCodeBERT against the current best-performing tool SEntiMoji. Our analysis reveals consistent improvements ranging from 1.17 \% to 16.79 \% in terms of macroaveraged and micro-averaged F1 scores, with general domain models outperforming specialized ones. To further enhance PTMs, we incorporate polarity features in attention layer during training demonstrating additional average gains of 1.0 \% to 10.23 \% over baseline PTMs approaches. Our work provides strong evidence for the advancements afforded by PTMs in recognizing nuanced emotions like Anger, Love, Fear, Joy, Sadness, and Surprise in software engineering contexts. Through comprehensive benchmarking and error analysis, we also outline scope for improvements to address contextual gaps.
AbstractList Emotion recognition in software engineering texts is critical for understanding developer expressions and improving collaboration. This paper presents a comparative analysis of state-of-the-art Pretrained Language Models (PTMs) for fine-grained emotion classification on two benchmark datasets from GitHub and Stack Overflow We evaluate six transformer models - BERT, RoBERTa, ALBERT, DeBERTa, CodeBERT and GraphCodeBERT against the current best-performing tool SEntiMoji. Our analysis reveals consistent improvements ranging from 1.17 \% to 16.79 \% in terms of macroaveraged and micro-averaged F1 scores, with general domain models outperforming specialized ones. To further enhance PTMs, we incorporate polarity features in attention layer during training demonstrating additional average gains of 1.0 \% to 10.23 \% over baseline PTMs approaches. Our work provides strong evidence for the advancements afforded by PTMs in recognizing nuanced emotions like Anger, Love, Fear, Joy, Sadness, and Surprise in software engineering contexts. Through comprehensive benchmarking and error analysis, we also outline scope for improvements to address contextual gaps.
Author Imran, Mia Mohammad
Author_xml – sequence: 1
  givenname: Mia Mohammad
  surname: Imran
  fullname: Imran, Mia Mohammad
  email: imranm3@vcu.edu
  organization: Virginia Commonwealth University,Richmond,Virginia,USA
BookMark eNotjFFLwzAUhSMoqHPPvviQP9CZNEmT-DbK1MFEwfk8btebEmiTkVTd_r1Fffo4nO-ca3IeYkBCbjlbcC7Vvaik0EYvJhom5BmZW22NZEwzpavyksxz9g1TlbTcVvaKHFdDHH0MtO5hqpzfw29cB_oe3fgNCekqdD4gJh86usXjmB_oktZxOECa5C-kywD9KftMo6NvCYsxwTRo6TZByC6mAVOmGwjdJ3RIX2KLfb4hFw76jPN_zsjH42pbPxeb16d1vdwUUBo7FlI0jClVgrXSOetMq1xZ7XWrGlQSmalQOeDYGKGUtg4QbGk0nwy7ByHFjNz9_XpE3B2SHyCddpxVUnOtxA-J5V7H
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
ESBDL
RIE
RIL
DOI 10.1145/3643787.3648034
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Open Access Journals
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798400705762
EndPage 80
ExternalDocumentID 10647175
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
ESBDL
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a289t-43b00552a994ff9f8d5f26c7d5be54e086e5fa1eb835579faea92871c7d9ca343
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001313494100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:03:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-43b00552a994ff9f8d5f26c7d5be54e086e5fa1eb835579faea92871c7d9ca343
OpenAccessLink https://ieeexplore.ieee.org/document/10647175
PageCount 8
ParticipantIDs ieee_primary_10647175
PublicationCentury 2000
PublicationDate 2024-April-20
PublicationDateYYYYMMDD 2024-04-20
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-20
  day: 20
PublicationDecade 2020
PublicationTitle 2024 IEEE/ACM International Workshop on Natural Language-Based Software Engineering (NLBSE)
PublicationTitleAbbrev NLBSE
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssib056491969
Score 1.9108168
Snippet Emotion recognition in software engineering texts is critical for understanding developer expressions and improving collaboration. This paper presents a...
SourceID ieee
SourceType Publisher
StartPage 73
SubjectTerms ALBERT
Analytical models
Benchmark testing
BERT
CodeBERT
DeBERTa
Emotion Classification
Emotion recognition
GraphCodeBERT
Large Language Models
RoBERTa
Software
Task analysis
Training
Transformers
Title Emotion Classification In Software Engineering Texts: A Comparative Analysis of Pre-trained Transformers Language Models
URI https://ieeexplore.ieee.org/document/10647175
WOSCitedRecordID wos001313494100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXhNbfPYbLxJaVEopWCV3ko2mYAgW-lD_flO0l3biwdPG5aFwGQz-WYm832E3HonYm5NscwqDFCUKJgtvGBShwzhaxEgkVW_DvVolE-nZlw1q6deGABIl8-gHYeplu_nbh1TZbjDM_SlWjVIQ-ts06xV_zwqkyZSvVT0PV2p7kQsSuW6jc-8E5WRd_RT0vExOPznxEektW3Eo-PfI-aY7EF5Qr77G-kdmgQt41WfZF36VNJndKpfdgF0h2aQTtD_Lu_pA-1tmb5pTUZC5wFnAJakIsDTSQ1kERbSYZXMpFEx7X3ZIi-D_qT3yCoBBWYxjloxKeImU9waI0MwIfcq8MxprwpQEjCaARVsFwqEYUqbYMGaGEHhF8ZZIcUpaZbzEs4IVdbxgned5aBlR3prnJMWYxPhTY6Q7Jy0otlmHxuOjFltsYs_3l-SA47wINZleOeKNFeLNVyTffe5elsubtLK_gCB0qdF
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46BT2pOPG3OXjt7JqkbbzJ2NiwjoFVdhtp8gKCdLIf6p_vS9a6XTx4aiiFwEvz8r338r6PkFujmcutiSBWAgMUwYpAFYYFPLExwtfCgierfs2S4TAdj-Woalb3vTAA4C-fQcsNfS3fTPXSpcpwh8foSxOxTXYE51G4ateqfx8Rc-nIXioCnzYXd8yVpdKkhc80dNrIGwoq_gDpHfxz6kPSXLfi0dHvIXNEtqA8Jt_dlfgO9ZKW7rKPty8dlPQZ3eqXmgHdIBqkOXrg-T19oJ011zet6Ujo1OIMEHixCDA0r6EsAkOaVelM6jTT3udN8tLr5p1-UEkoBAojqUXAmdtmIlJScmulTY2wUawTIwoQHDCeAWFVGwoEYiKRVoGSLobCL6RWjLMT0iinJZwSKpSOiqitVQQJD7lRUmuuMDphRqYIys5I05lt8rFiyZjUFjv_4_0N2evnT9kkGwwfL8h-hGDBVWmi8JI0FrMlXJFd_bl4m8-u_Sr_AGBfqow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE%2FACM+International+Workshop+on+Natural+Language-Based+Software+Engineering+%28NLBSE%29&rft.atitle=Emotion+Classification+In+Software+Engineering+Texts%3A+A+Comparative+Analysis+of+Pre-trained+Transformers+Language+Models&rft.au=Imran%2C+Mia+Mohammad&rft.date=2024-04-20&rft.pub=ACM&rft.spage=73&rft.epage=80&rft_id=info:doi/10.1145%2F3643787.3648034&rft.externalDocID=10647175