A Bunched Logic for Conditional Independence

Independence and conditional independence are fundamental concepts for reasoning about groups of random variables in probabilistic programs. Verification methods for independence are still nascent, and existing methods cannot handle conditional independence. We extend the logic of bunched implicatio...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 1 - 14
Main Authors: Bao, Jialu, Docherty, Simon, Hsu, Justin, Silva, Alexandra
Format: Conference Proceeding
Language:English
Published: IEEE 29.06.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Independence and conditional independence are fundamental concepts for reasoning about groups of random variables in probabilistic programs. Verification methods for independence are still nascent, and existing methods cannot handle conditional independence. We extend the logic of bunched implications (BI) with a non-commutative conjunction and provide a model based on Markov kernels; conditional independence can be directly captured as a logical formula in this model. Noting that Markov kernels are Kleisli arrows for the distribution monad, we then introduce a second model based on the powerset monad and show how it can capture join dependency, a non-probabilistic analogue of conditional independence from database theory. Finally, we develop a program logic for verifying conditional independence in probabilistic programs.
AbstractList Independence and conditional independence are fundamental concepts for reasoning about groups of random variables in probabilistic programs. Verification methods for independence are still nascent, and existing methods cannot handle conditional independence. We extend the logic of bunched implications (BI) with a non-commutative conjunction and provide a model based on Markov kernels; conditional independence can be directly captured as a logical formula in this model. Noting that Markov kernels are Kleisli arrows for the distribution monad, we then introduce a second model based on the powerset monad and show how it can capture join dependency, a non-probabilistic analogue of conditional independence from database theory. Finally, we develop a program logic for verifying conditional independence in probabilistic programs.
Author Hsu, Justin
Docherty, Simon
Silva, Alexandra
Bao, Jialu
Author_xml – sequence: 1
  givenname: Jialu
  surname: Bao
  fullname: Bao, Jialu
  organization: University of Wisconsin-Madison
– sequence: 2
  givenname: Simon
  surname: Docherty
  fullname: Docherty, Simon
  organization: University College London
– sequence: 3
  givenname: Justin
  surname: Hsu
  fullname: Hsu, Justin
  organization: University of Wisconsin-Madison
– sequence: 4
  givenname: Alexandra
  surname: Silva
  fullname: Silva, Alexandra
  organization: University College London
BookMark eNotj8tKw0AUQEdQUGu-QJD5ABPn3nkva7AaCLhQ12UeNxqpk5LUhX-vYDfn7A6cS3ZapkKM3YBoAIS_67v2RSMa1aBAaLyywgKesMpbB8ZopZzX5pxVy_IphEBnQSh_wW7X_P67pA_KvJ_ex8SHaebtVPJ4GKcSdrwrmfb0h5Loip0NYbdQdfSKvW0eXtunun9-7Np1Xwd0_lBLDZpytBpd0tn6GDIOOiGIaBCVjd5B8ibGISofSCYtiHwCgTIHGVCu2PV_dySi7X4ev8L8sz0-yV9sK0NI
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470712
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 14
ExternalDocumentID 9470712
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-3515edb7528c5d79bad2f5c210b62247b981c96bbfb49ae3c50ee9c1023da3a23
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-3515edb7528c5d79bad2f5c210b62247b981c96bbfb49ae3c50ee9c1023da3a23
PageCount 14
ParticipantIDs ieee_primary_9470712
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.3044126
Snippet Independence and conditional independence are fundamental concepts for reasoning about groups of random variables in probabilistic programs. Verification...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Cognition
Computational modeling
Computer science
Markov processes
Probabilistic logic
Random variables
Title A Bunched Logic for Conditional Independence
URI https://ieeexplore.ieee.org/document/9470712
WOSCitedRecordID wos000947350400078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDBZd2WGnbmvH3viwY9MmThxHx62srFBKYQ96K34orJd2tOl-_-wkyxjsspsx2EY29ifJkj6AO82l1jrHQESWB4nVJlAowsBhgc1tHFpVBsi-TeVsli0WOG9Bv8mFIaIy-IwGvln-5duN2XtX2RAT6RDRPbgHUqZVrlbjT_Gav9N26yTgKMThdDJ69tqF95zwaFAP_sWiUoLIuPO_5Y-h95ONx-YNzpxAi9an0PmmY2D17exC_549OJR6J8s8g7JhTh9lbg67qvx9bNJQ3hrqwev48WX0FNRkCIFyNlHhI-4FWS0Fz4ywErWyPBfGWWw6dTAsNWaRwdTtu05QUWxESITGV2awKlY8PoP2erOmc2BposNE5kKq0CYkM-Q5xRjFxllLqLPoArpe-OVHVe9iWct9-Xf3FRz5_fXhUxyvoV1s93QDh-azWO22t-UhfQE1N5GN
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4QNNETKhjf9uCRhW63pdujGgnElZCIhhvpYzZyAYPg77dd1jUmXrw1Tdp02rTfzHRmPoAbw6QxJleRiB2LuDM20krQyGOBy11CnS4CZF8zORql06ka16Bd5cIgYhF8hp3QLP7y3dJugqusq7j0iOgf3B3BOaPbbK3KoxJ0f6_vlmnAMVXdbHj_HPSL4Dthcacc_otHpYCRfuN_CziA1k8-HhlXSHMINVwcQeObkIGU97MJ7Vty53HqDR0JHMqWeI2U-DncfOvxI8OK9NZiC176D5P7QVTSIUTaW0XrEHMv0BkpWGqFk8pox3Jhvc1meh6IpVFpbFXP77zhSmNiBUVUNtRmcDrRLDmG-mK5wBMgPW4ol7mQmjqOMlUsx0TFifX2kjJpfArNIPzsfVvxYlbKffZ39zXsDSZP2Swbjh7PYT_sdQimYuoC6uvVBi9h136u5x-rq-LAvgD8FZTU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=A+Bunched+Logic+for+Conditional+Independence&rft.au=Bao%2C+Jialu&rft.au=Docherty%2C+Simon&rft.au=Hsu%2C+Justin&rft.au=Silva%2C+Alexandra&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FLICS52264.2021.9470712&rft.externalDocID=9470712