A Bunched Logic for Conditional Independence
Independence and conditional independence are fundamental concepts for reasoning about groups of random variables in probabilistic programs. Verification methods for independence are still nascent, and existing methods cannot handle conditional independence. We extend the logic of bunched implicatio...
Saved in:
| Published in: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 1 - 14 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
29.06.2021
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Independence and conditional independence are fundamental concepts for reasoning about groups of random variables in probabilistic programs. Verification methods for independence are still nascent, and existing methods cannot handle conditional independence. We extend the logic of bunched implications (BI) with a non-commutative conjunction and provide a model based on Markov kernels; conditional independence can be directly captured as a logical formula in this model. Noting that Markov kernels are Kleisli arrows for the distribution monad, we then introduce a second model based on the powerset monad and show how it can capture join dependency, a non-probabilistic analogue of conditional independence from database theory. Finally, we develop a program logic for verifying conditional independence in probabilistic programs. |
|---|---|
| AbstractList | Independence and conditional independence are fundamental concepts for reasoning about groups of random variables in probabilistic programs. Verification methods for independence are still nascent, and existing methods cannot handle conditional independence. We extend the logic of bunched implications (BI) with a non-commutative conjunction and provide a model based on Markov kernels; conditional independence can be directly captured as a logical formula in this model. Noting that Markov kernels are Kleisli arrows for the distribution monad, we then introduce a second model based on the powerset monad and show how it can capture join dependency, a non-probabilistic analogue of conditional independence from database theory. Finally, we develop a program logic for verifying conditional independence in probabilistic programs. |
| Author | Hsu, Justin Docherty, Simon Silva, Alexandra Bao, Jialu |
| Author_xml | – sequence: 1 givenname: Jialu surname: Bao fullname: Bao, Jialu organization: University of Wisconsin-Madison – sequence: 2 givenname: Simon surname: Docherty fullname: Docherty, Simon organization: University College London – sequence: 3 givenname: Justin surname: Hsu fullname: Hsu, Justin organization: University of Wisconsin-Madison – sequence: 4 givenname: Alexandra surname: Silva fullname: Silva, Alexandra organization: University College London |
| BookMark | eNotj8tKw0AUQEdQUGu-QJD5ABPn3nkva7AaCLhQ12UeNxqpk5LUhX-vYDfn7A6cS3ZapkKM3YBoAIS_67v2RSMa1aBAaLyywgKesMpbB8ZopZzX5pxVy_IphEBnQSh_wW7X_P67pA_KvJ_ex8SHaebtVPJ4GKcSdrwrmfb0h5Loip0NYbdQdfSKvW0eXtunun9-7Np1Xwd0_lBLDZpytBpd0tn6GDIOOiGIaBCVjd5B8ibGISofSCYtiHwCgTIHGVCu2PV_dySi7X4ev8L8sz0-yV9sK0NI |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/LICS52264.2021.9470712 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781665448956 1665448954 |
| EndPage | 14 |
| ExternalDocumentID | 9470712 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIO |
| ID | FETCH-LOGICAL-a289t-3515edb7528c5d79bad2f5c210b62247b981c96bbfb49ae3c50ee9c1023da3a23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:26:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a289t-3515edb7528c5d79bad2f5c210b62247b981c96bbfb49ae3c50ee9c1023da3a23 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_9470712 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-June-29 |
| PublicationDateYYYYMMDD | 2021-06-29 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-June-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science |
| PublicationTitleAbbrev | LICS |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002871049 |
| Score | 2.3044126 |
| Snippet | Independence and conditional independence are fundamental concepts for reasoning about groups of random variables in probabilistic programs. Verification... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Cognition Computational modeling Computer science Markov processes Probabilistic logic Random variables |
| Title | A Bunched Logic for Conditional Independence |
| URI | https://ieeexplore.ieee.org/document/9470712 |
| WOSCitedRecordID | wos000947350400078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDBZd2WGnbmvH3viwY9MmThxHx62srFBKYQ96K34orJd2tOl-_-wkyxjsspsx2EY29ifJkj6AO82l1jrHQESWB4nVJlAowsBhgc1tHFpVBsi-TeVsli0WOG9Bv8mFIaIy-IwGvln-5duN2XtX2RAT6RDRPbgHUqZVrlbjT_Gav9N26yTgKMThdDJ69tqF95zwaFAP_sWiUoLIuPO_5Y-h95ONx-YNzpxAi9an0PmmY2D17exC_549OJR6J8s8g7JhTh9lbg67qvx9bNJQ3hrqwev48WX0FNRkCIFyNlHhI-4FWS0Fz4ywErWyPBfGWWw6dTAsNWaRwdTtu05QUWxESITGV2awKlY8PoP2erOmc2BposNE5kKq0CYkM-Q5xRjFxllLqLPoArpe-OVHVe9iWct9-Xf3FRz5_fXhUxyvoV1s93QDh-azWO22t-UhfQE1N5GN |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4QNNETKhjf9uCRhW63pdujGgnElZCIhhvpYzZyAYPg77dd1jUmXrw1Tdp02rTfzHRmPoAbw6QxJleRiB2LuDM20krQyGOBy11CnS4CZF8zORql06ka16Bd5cIgYhF8hp3QLP7y3dJugqusq7j0iOgf3B3BOaPbbK3KoxJ0f6_vlmnAMVXdbHj_HPSL4Dthcacc_otHpYCRfuN_CziA1k8-HhlXSHMINVwcQeObkIGU97MJ7Vty53HqDR0JHMqWeI2U-DncfOvxI8OK9NZiC176D5P7QVTSIUTaW0XrEHMv0BkpWGqFk8pox3Jhvc1meh6IpVFpbFXP77zhSmNiBUVUNtRmcDrRLDmG-mK5wBMgPW4ol7mQmjqOMlUsx0TFifX2kjJpfArNIPzsfVvxYlbKffZ39zXsDSZP2Swbjh7PYT_sdQimYuoC6uvVBi9h136u5x-rq-LAvgD8FZTU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=A+Bunched+Logic+for+Conditional+Independence&rft.au=Bao%2C+Jialu&rft.au=Docherty%2C+Simon&rft.au=Hsu%2C+Justin&rft.au=Silva%2C+Alexandra&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FLICS52264.2021.9470712&rft.externalDocID=9470712 |