Constraint Satisfaction Problems over Finite Structures

We initiate a systematic study of the computational complexity of the Constraint Satisfaction Problem (CSP) over finite structures that may contain both relations and operations. We show the close connection between this problem and a natural algebraic question: which finite algebras admit only poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science S. 1 - 13
Hauptverfasser: Barto, Libor, DeMeo, William, Mottet, Antoine
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 29.06.2021
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We initiate a systematic study of the computational complexity of the Constraint Satisfaction Problem (CSP) over finite structures that may contain both relations and operations. We show the close connection between this problem and a natural algebraic question: which finite algebras admit only polynomially many homomorphisms into them?We give some sufficient and some necessary conditions for a finite algebra to have this property. In particular, we show that every finite equationally nontrivial algebra has this property which gives us, as a simple consequence, a complete complexity classification of CSPs over two-element structures, thus extending the classification for two-element relational structures by Schaefer (STOC'78).We also present examples of two-element structures that have bounded width but do not have relational width (2,3), thus demonstrating that, from a descriptive complexity perspective, allowing operations leads to a richer theory.
AbstractList We initiate a systematic study of the computational complexity of the Constraint Satisfaction Problem (CSP) over finite structures that may contain both relations and operations. We show the close connection between this problem and a natural algebraic question: which finite algebras admit only polynomially many homomorphisms into them?We give some sufficient and some necessary conditions for a finite algebra to have this property. In particular, we show that every finite equationally nontrivial algebra has this property which gives us, as a simple consequence, a complete complexity classification of CSPs over two-element structures, thus extending the classification for two-element relational structures by Schaefer (STOC'78).We also present examples of two-element structures that have bounded width but do not have relational width (2,3), thus demonstrating that, from a descriptive complexity perspective, allowing operations leads to a richer theory.
Author Barto, Libor
Mottet, Antoine
DeMeo, William
Author_xml – sequence: 1
  givenname: Libor
  surname: Barto
  fullname: Barto, Libor
  organization: Charles University,Faculty of Mathematics and Physics,Department of Algebra,Prague,Czechia
– sequence: 2
  givenname: William
  surname: DeMeo
  fullname: DeMeo, William
  organization: Charles University,Faculty of Mathematics and Physics,Department of Algebra,Prague,Czechia
– sequence: 3
  givenname: Antoine
  surname: Mottet
  fullname: Mottet, Antoine
  organization: Charles University,Faculty of Mathematics and Physics,Department of Algebra,Prague,Czechia
BookMark eNotj11LwzAYRiMoqFt_gSD9A61v0jQfl1KcGxQU6q5HEt9AZEslyQT_vQV39cC5OJznnlzHOSIhjxRaSkE_jbth6hkTvGXAaKu5BCHhilRaKipEz7nSvbglVc5fAMCUpMD1HZHDHHNJJsRST6aE7I0rYY71e5rtEU-5nn8w1ZsQQ8F6KunsyjlhXpMbb44Zq8uuyH7z8jFsm_HtdTc8j41hSpeGScuXKv8pvJFLndHOCo49gBWd8h691dpbujAnpdROGqU8g85DzwBdtyIP_96AiIfvFE4m_R4u97o_2ONImQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470670
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470670
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-27b4226fd6fa7264a9cb64e500b638ffefb99fb164ec7779c7a88f203f0520ec3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-27b4226fd6fa7264a9cb64e500b638ffefb99fb164ec7779c7a88f203f0520ec3
PageCount 13
ParticipantIDs ieee_primary_9470670
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.1708474
Snippet We initiate a systematic study of the computational complexity of the Constraint Satisfaction Problem (CSP) over finite structures that may contain both...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Algebra
Computational complexity
Computer science
Systematics
Title Constraint Satisfaction Problems over Finite Structures
URI https://ieeexplore.ieee.org/document/9470670
WOSCitedRecordID wos000947350400065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3a4sFT1Vb8Zg8eTbtN0mzmXAwKpRSq0FvJbmbBSyv24_c7s41VwYu3EFjCzO4wbybv7QDc8yHxlFkduaxKopQccUgJkEuGWAovamDDTo_NZJLP5zhtwMNBC0NEgXxGPXkM__KrldtKq6yPqRFZSROaxpi9VuvQTxHkz2i3FgEPNPbHz6OZoAvpnMSDXr341xSVkESK9v8-fwLdbzWemh7yzCk0aHkG7a9xDKqOzg4IaWUdRj5s1OyHaEEWy9CYtRK6pireBGaqWbg4dsvVdhdei8eX0VNUz0WISi6PNlFsrOhffZX50rB9JTqbpTTU2nI0eU_eInrLhRA5dhQ6U-a5j3XihfRCLjmH1nK1pAtQvMQipRVazDiVY-44WTEm8trmWRLrS-iIHxbv-6svFrULrv5-fQ3H4mphUsV4Ay02hG7hyO3Y5I-7sF-f8gGVxw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmugJFYzf9uDRhe4H2-2ZSCCuhARMuJFtd5p4ASPg73emrKiJF2-bTZrsTDuZN7PvdQDu6ZA4TI0MbFrGQYIWKaQYyMVdXTAvKjR-p3M1GmWzmR7X4GGnhUFETz7DNj_6f_nl0m64VdbRiWJZyR7sd5MkCrdqrV1HhbE_4d1KBhxK3cmHvQnjC-6dRGG7Wv5rjopPI_3G_z7gGFrfejwx3mWaE6jh4hQaXwMZRBWfTWDaysoPfViLyQ_ZAi_msTErwYRN0X9loCkm_urYDdXbLXjpP057g6CajBAUVCCtg0gZVsC6MnWFIvsKbU2aYFdKQ_HkHDqjtTNUCqFVSmmriixzkYwd017QxmdQXywXeA6ClhiNSamNTimZ68xSuiJU5KTJ0jiSF9BkP8zftpdfzCsXXP79-g4OB9PnfJ4PR09XcMRuZ15VpK-hTkbhDRzYDzL__dbv3Sft45kO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Constraint+Satisfaction+Problems+over+Finite+Structures&rft.au=Barto%2C+Libor&rft.au=DeMeo%2C+William&rft.au=Mottet%2C+Antoine&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470670&rft.externalDocID=9470670