Axiomatizations and Computability of Weighted Monadic Second-Order Logic
Weighted monadic second-order logic is a weighted extension of monadic second-order logic that captures exactly the behaviour of weighted automata. Its semantics is parameterized with respect to a semiring on which the values that weighted formulas output are evaluated. Gastin and Monmege (2018) gav...
Uloženo v:
| Vydáno v: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
29.06.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Weighted monadic second-order logic is a weighted extension of monadic second-order logic that captures exactly the behaviour of weighted automata. Its semantics is parameterized with respect to a semiring on which the values that weighted formulas output are evaluated. Gastin and Monmege (2018) gave abstract semantics for a version of weighted monadic second-order logic to give a more general and modular proof of the equivalence of the logic with weighted automata. We focus on the abstract semantics of the logic and we give a complete axiomatization both for the full logic and for a fragment without general sum, thus giving a more fine-grained understanding of the logic. We discuss how common decision problems for logical languages can be adapted to the weighted setting, and show that many of these are decidable, though they inherit bad complexity from the underlying first- and second-order logics. However, we show that a weighted adaptation of satisfiability is undecidable for the logic when one uses the abstract interpretation. |
|---|---|
| AbstractList | Weighted monadic second-order logic is a weighted extension of monadic second-order logic that captures exactly the behaviour of weighted automata. Its semantics is parameterized with respect to a semiring on which the values that weighted formulas output are evaluated. Gastin and Monmege (2018) gave abstract semantics for a version of weighted monadic second-order logic to give a more general and modular proof of the equivalence of the logic with weighted automata. We focus on the abstract semantics of the logic and we give a complete axiomatization both for the full logic and for a fragment without general sum, thus giving a more fine-grained understanding of the logic. We discuss how common decision problems for logical languages can be adapted to the weighted setting, and show that many of these are decidable, though they inherit bad complexity from the underlying first- and second-order logics. However, we show that a weighted adaptation of satisfiability is undecidable for the logic when one uses the abstract interpretation. |
| Author | Achilleos, Antonis Pedersen, Mathias Ruggaard |
| Author_xml | – sequence: 1 givenname: Antonis surname: Achilleos fullname: Achilleos, Antonis email: antonios@ru.is organization: Reykjavik University,Department of Computer Science,Reykjavik,Iceland – sequence: 2 givenname: Mathias Ruggaard surname: Pedersen fullname: Pedersen, Mathias Ruggaard email: mathias.r.pedersen@gmail.com organization: Reykjavik University,Department of Computer Science,Reykjavik,Iceland |
| BookMark | eNotj8tKw0AUQEdQUGu-QJD5gcS580pmWYLaQqSLKi7LPO7UkTZTkgjWr7dgF4ezO3BuyWWfeyTkAVgFwMxjt2zXinMtK844VEbWTIO6IIWpG9BaSdkYpa9JMY5fjDHe1MCkuSGL-U_Kezul3xO5H6ntA23z_vA9WZd2aTrSHOkHpu3nhIG-5t6G5Okafe5DuRoCDrTL2-TvyFW0uxGLs2fk_fnprV2U3epl2c670vLGTCUEZ7wBL4WB6LhRXniNymqEGL3jmiM4FwKoaFTtoooBIwQpvMCmNo2Ykfv_bkLEzWFIezscN-df8QejIE83 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/LICS52264.2021.9470615 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781665448956 1665448954 |
| EndPage | 13 |
| ExternalDocumentID | 9470615 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIO |
| ID | FETCH-LOGICAL-a289t-1db9c91c4391fb295c3c6e5a6e1ffcb262e1bbdd15f957bf5fdef1d43c3e87983 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:23:08 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a289t-1db9c91c4391fb295c3c6e5a6e1ffcb262e1bbdd15f957bf5fdef1d43c3e87983 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9470615 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-June-29 |
| PublicationDateYYYYMMDD | 2021-06-29 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-June-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science |
| PublicationTitleAbbrev | LICS |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002871049 |
| Score | 2.1559675 |
| Snippet | Weighted monadic second-order logic is a weighted extension of monadic second-order logic that captures exactly the behaviour of weighted automata. Its... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Automata axiomatization Complexity theory Computer science Model checking monadic second-order logic satisfiability Semantics Syntactics weighted automata weighted logic |
| Title | Axiomatizations and Computability of Weighted Monadic Second-Order Logic |
| URI | https://ieeexplore.ieee.org/document/9470615 |
| WOSCitedRecordID | wos000947350400045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1t8eCpait-k4NH0252N5vNUYqlQqmF-tFbSTIT6GUrtRX99ya7a0Xw4i2EhMCEYd685M0Qcm09RBCJSJhKVcRSHzOZz7McExHoLM5BYkm4PY_lZJLP52raIDc7LQwilp_PsBeG5Vs-rOw2UGV9lcoQgZukKWVWabV2fEpA_h7t1iJgHqn--H4wC-giMCcx79Wbf3VRKYPIsP2_4w9I90eNR6e7OHNIGlgckfZ3OwZae2eHjG4_lqsAQGtlJdUF0GpZVYz7k64cfSm5UATqvVnD0tJZSImBPYQanDS0XrZd8jS8exyMWN0ogWmfL20YB6Os4jaoaJ2JlbCJzVDoDLlz1sRZjNwYAC6cEtI44QAdhzSxCeZS5ckxaRWrAk8INZg7BdovMZgKyA36O1bAtU4sChmdkk4wzOK1qoWxqG1y9vf0OdkPtg9fq2J1QVqb9RYvyZ593yzf1lflBX4BDVKd-w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKehp6ib-NgePZlvapm2OMhwb1jnY1N1GfrzALq3MTfS_t2nrRPDirYQEQh7hfe9rvvcBXOscInCf-1QEokuDPGfSvM6ylHeNDL3YRFgQbs9JNBrFs5kY1-Bmo4VBxOLxGbbdZ_Ev32R67aiyjggil4G3YNs5Z_FSrbVhVBz2z_FuJQNmXdFJhr2JwxeOO_FYu1r-y0elSCP9xv82sA-tHz0eGW8yzQHUMD2ExrchA6nuZxMGtx-LzEHQSltJZGpIOa1sx_1JMkteCjYUDcnvszQLTSauKDb00XXhJM58WbfgqX837Q1oZZVAZV4xrSgzSmjBtNPRWuUJrn0dIpchMmu18kIPmVLGMG4Fj5Tl1qBlJvC1j3EkYv8I6mmW4jEQhbEVRuZTFAbcxArzKAvDpPQ18qh7Ak13MPPXshvGvDqT07-Hr2B3MH1I5slwdH8Gey4O7qGVJ86hvlqu8QJ29Ptq8ba8LIL5BXfIoUY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Axiomatizations+and+Computability+of+Weighted+Monadic+Second-Order+Logic&rft.au=Achilleos%2C+Antonis&rft.au=Pedersen%2C+Mathias+Ruggaard&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470615&rft.externalDocID=9470615 |