Axiomatizations and Computability of Weighted Monadic Second-Order Logic

Weighted monadic second-order logic is a weighted extension of monadic second-order logic that captures exactly the behaviour of weighted automata. Its semantics is parameterized with respect to a semiring on which the values that weighted formulas output are evaluated. Gastin and Monmege (2018) gav...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13
Hlavní autoři: Achilleos, Antonis, Pedersen, Mathias Ruggaard
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Weighted monadic second-order logic is a weighted extension of monadic second-order logic that captures exactly the behaviour of weighted automata. Its semantics is parameterized with respect to a semiring on which the values that weighted formulas output are evaluated. Gastin and Monmege (2018) gave abstract semantics for a version of weighted monadic second-order logic to give a more general and modular proof of the equivalence of the logic with weighted automata. We focus on the abstract semantics of the logic and we give a complete axiomatization both for the full logic and for a fragment without general sum, thus giving a more fine-grained understanding of the logic. We discuss how common decision problems for logical languages can be adapted to the weighted setting, and show that many of these are decidable, though they inherit bad complexity from the underlying first- and second-order logics. However, we show that a weighted adaptation of satisfiability is undecidable for the logic when one uses the abstract interpretation.
AbstractList Weighted monadic second-order logic is a weighted extension of monadic second-order logic that captures exactly the behaviour of weighted automata. Its semantics is parameterized with respect to a semiring on which the values that weighted formulas output are evaluated. Gastin and Monmege (2018) gave abstract semantics for a version of weighted monadic second-order logic to give a more general and modular proof of the equivalence of the logic with weighted automata. We focus on the abstract semantics of the logic and we give a complete axiomatization both for the full logic and for a fragment without general sum, thus giving a more fine-grained understanding of the logic. We discuss how common decision problems for logical languages can be adapted to the weighted setting, and show that many of these are decidable, though they inherit bad complexity from the underlying first- and second-order logics. However, we show that a weighted adaptation of satisfiability is undecidable for the logic when one uses the abstract interpretation.
Author Achilleos, Antonis
Pedersen, Mathias Ruggaard
Author_xml – sequence: 1
  givenname: Antonis
  surname: Achilleos
  fullname: Achilleos, Antonis
  email: antonios@ru.is
  organization: Reykjavik University,Department of Computer Science,Reykjavik,Iceland
– sequence: 2
  givenname: Mathias Ruggaard
  surname: Pedersen
  fullname: Pedersen, Mathias Ruggaard
  email: mathias.r.pedersen@gmail.com
  organization: Reykjavik University,Department of Computer Science,Reykjavik,Iceland
BookMark eNotj8tKw0AUQEdQUGu-QJD5gcS580pmWYLaQqSLKi7LPO7UkTZTkgjWr7dgF4ezO3BuyWWfeyTkAVgFwMxjt2zXinMtK844VEbWTIO6IIWpG9BaSdkYpa9JMY5fjDHe1MCkuSGL-U_Kezul3xO5H6ntA23z_vA9WZd2aTrSHOkHpu3nhIG-5t6G5Okafe5DuRoCDrTL2-TvyFW0uxGLs2fk_fnprV2U3epl2c670vLGTCUEZ7wBL4WB6LhRXniNymqEGL3jmiM4FwKoaFTtoooBIwQpvMCmNo2Ykfv_bkLEzWFIezscN-df8QejIE83
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470615
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470615
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-1db9c91c4391fb295c3c6e5a6e1ffcb262e1bbdd15f957bf5fdef1d43c3e87983
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:23:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-1db9c91c4391fb295c3c6e5a6e1ffcb262e1bbdd15f957bf5fdef1d43c3e87983
PageCount 13
ParticipantIDs ieee_primary_9470615
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.1559675
Snippet Weighted monadic second-order logic is a weighted extension of monadic second-order logic that captures exactly the behaviour of weighted automata. Its...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Automata
axiomatization
Complexity theory
Computer science
Model checking
monadic second-order logic
satisfiability
Semantics
Syntactics
weighted automata
weighted logic
Title Axiomatizations and Computability of Weighted Monadic Second-Order Logic
URI https://ieeexplore.ieee.org/document/9470615
WOSCitedRecordID wos000947350400045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1t8eCpait-k4NH0252N5vNUYqlQqmF-tFbSTIT6GUrtRX99ya7a0Xw4i2EhMCEYd685M0Qcm09RBCJSJhKVcRSHzOZz7McExHoLM5BYkm4PY_lZJLP52raIDc7LQwilp_PsBeG5Vs-rOw2UGV9lcoQgZukKWVWabV2fEpA_h7t1iJgHqn--H4wC-giMCcx79Wbf3VRKYPIsP2_4w9I90eNR6e7OHNIGlgckfZ3OwZae2eHjG4_lqsAQGtlJdUF0GpZVYz7k64cfSm5UATqvVnD0tJZSImBPYQanDS0XrZd8jS8exyMWN0ogWmfL20YB6Os4jaoaJ2JlbCJzVDoDLlz1sRZjNwYAC6cEtI44QAdhzSxCeZS5ckxaRWrAk8INZg7BdovMZgKyA36O1bAtU4sChmdkk4wzOK1qoWxqG1y9vf0OdkPtg9fq2J1QVqb9RYvyZ593yzf1lflBX4BDVKd-w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKehp6ib-NgePZlvapm2OMhwb1jnY1N1GfrzALq3MTfS_t2nrRPDirYQEQh7hfe9rvvcBXOscInCf-1QEokuDPGfSvM6ylHeNDL3YRFgQbs9JNBrFs5kY1-Bmo4VBxOLxGbbdZ_Ev32R67aiyjggil4G3YNs5Z_FSrbVhVBz2z_FuJQNmXdFJhr2JwxeOO_FYu1r-y0elSCP9xv82sA-tHz0eGW8yzQHUMD2ExrchA6nuZxMGtx-LzEHQSltJZGpIOa1sx_1JMkteCjYUDcnvszQLTSauKDb00XXhJM58WbfgqX837Q1oZZVAZV4xrSgzSmjBtNPRWuUJrn0dIpchMmu18kIPmVLGMG4Fj5Tl1qBlJvC1j3EkYv8I6mmW4jEQhbEVRuZTFAbcxArzKAvDpPQ18qh7Ak13MPPXshvGvDqT07-Hr2B3MH1I5slwdH8Gey4O7qGVJ86hvlqu8QJ29Ptq8ba8LIL5BXfIoUY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Axiomatizations+and+Computability+of+Weighted+Monadic+Second-Order+Logic&rft.au=Achilleos%2C+Antonis&rft.au=Pedersen%2C+Mathias+Ruggaard&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470615&rft.externalDocID=9470615