Monomial size vs. Bit-complexity in Sums-of-Squares and Polynomial Calculus

In this paper we consider the relationship between monomial-size and bit-complexity in Sums-of-Squares (SOS) in Polynomial Calculus Resolution over rationals ({\text{PCR}}/\mathbb{Q}). We show that there is a set of polynomial constraints Q n over Boolean variables that has both SOS and {\text{PCR}}...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 1 - 7
Main Author: Hakoniemi, Tuomas
Format: Conference Proceeding
Language:English
Published: IEEE 29.06.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we consider the relationship between monomial-size and bit-complexity in Sums-of-Squares (SOS) in Polynomial Calculus Resolution over rationals ({\text{PCR}}/\mathbb{Q}). We show that there is a set of polynomial constraints Q n over Boolean variables that has both SOS and {\text{PCR}}/\mathbb{Q} refutations of degree 2 and thus with only polynomially many monomials, but for which any SOS or {\text{PCR}}/\mathbb{Q} refutation must have exponential bit-complexity, when the rational coefficients are represented with their reduced fractions written in binary.
AbstractList In this paper we consider the relationship between monomial-size and bit-complexity in Sums-of-Squares (SOS) in Polynomial Calculus Resolution over rationals ({\text{PCR}}/\mathbb{Q}). We show that there is a set of polynomial constraints Q n over Boolean variables that has both SOS and {\text{PCR}}/\mathbb{Q} refutations of degree 2 and thus with only polynomially many monomials, but for which any SOS or {\text{PCR}}/\mathbb{Q} refutation must have exponential bit-complexity, when the rational coefficients are represented with their reduced fractions written in binary.
Author Hakoniemi, Tuomas
Author_xml – sequence: 1
  givenname: Tuomas
  surname: Hakoniemi
  fullname: Hakoniemi, Tuomas
  organization: Universitat Politècnica de Catalunya
BookMark eNotj9tKxDAURSMoqGO_QJD8QGtOmqTJoxYvgxWF6vOQ5gKRtB2bVqxfr-A8bViwFuxzdDyMg0PoCkgBQNR1s61bTqlgBSUUCsUqwhk_QpmqJAjBGZOKi1OUpfRBCKGyAsLUGXp6HoexDzriFH4c_koFvg1zbsZ-H913mFccBtwufcpHn7efi55cwnqw-HWM68GsdTRLXNIFOvE6JpcddoPe7-_e6se8eXnY1jdNrqlUcw7UQOest5x3YKwCxb0vO6pNZa1UVSlAU9YxDlZ5Irgg4I3jUhJP_wgtN-jyvxucc7v9FHo9rbvD5fIXTs1PTA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470545
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 7
ExternalDocumentID 9470545
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-12c1bedfd55b1cd9195ff3b2ac7dd897361a24b451d9f065601fce5880f2d9f23
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-12c1bedfd55b1cd9195ff3b2ac7dd897361a24b451d9f065601fce5880f2d9f23
PageCount 7
ParticipantIDs ieee_primary_9470545
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.2046702
Snippet In this paper we consider the relationship between monomial-size and bit-complexity in Sums-of-Squares (SOS) in Polynomial Calculus Resolution over rationals...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Calculus
Computer science
Title Monomial size vs. Bit-complexity in Sums-of-Squares and Polynomial Calculus
URI https://ieeexplore.ieee.org/document/9470545
WOSCitedRecordID wos000947350400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBp6ib-JgePZlvSpGmuFoeijsEUdhtpfkBhtrq2Q_3rTbo6Ebx4Cw8egReSfO_lffkAuIwo5pIbhiQfaURpYJEMuUtVJKNcWRJIbWuxCT6ZRPO5mLbA1ZYLY4ypm8_MwA_rt3ydq8qXyoaCcocwWBu0OQ83XK1tPcUjf4d2GxIwHonhw1088-jCV04IHjTOv1RU6ktk3P3f9Hug_8PGg9PtPbMPWiY7AN1vOQbY7M4euH-sOcZyCYv008B1MYDXaYnqpnHz7tA2TDM4q14KlFs0e6s88wjKTMNpvvxoPGO59PXAog-exzdP8S1qtBKQdClTiTBRODHaasYSrLTAglkbJEQqrnUkeBBiSWhCGdbCjvyPO9gqw9zutcRZSHAIOlmemSMAQ0m5FpGVXpjYUiaVO9WoVpgy69BHcgx6PjaL1813GIsmLCd_m0_Brg-_764i4gx0ylVlzsGOWpdpsbqo1_AL3yedaQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61Cnqq2opvc_Bo2k02aTZXi6WlDwqt0FvJ5gGFutVut6i_3mS7VgQv3kJgIGSY5MtkvvkAuI8o5pIbhiQPNKI0tEg2uXuqSEa5siSU2uZiE3w4jKZTMSqBhx0XxhiTF5-Zuh_mf_l6qTKfKmsIyh3CYHtgn1FKgi1ba5dR8djf4d2CBowD0eh3W2OPL3zuhOB6Yf5LRyW_RtqV_y3gGNR--HhwtLtpTkDJJKeg8i3IAIv4rILeIGcZywVM558GbtI6fJyvUV42bt4d3obzBI6zlxQtLRq_ZZ57BGWi4Wi5-CgsW3LhM4JpDTy3nyatDirUEpB0j6Y1wkTh2GirGYux0gILZm0YE6m41pHgYRNLQmPKsBY28D13sFWGufi1xM2Q8AyUk2VizgFsSsq1iKz00sSWMqncuUa1wpRZhz_iC1D1ezN73TbEmBXbcvn39B047EwG_Vm_O-xdgSPvCl9rRcQ1KK9XmbkBB2qznqer29yfXz6koLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Monomial+size+vs.+Bit-complexity+in+Sums-of-Squares+and+Polynomial+Calculus&rft.au=Hakoniemi%2C+Tuomas&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FLICS52264.2021.9470545&rft.externalDocID=9470545