Rescuing memristor-based neuromorphic design with high defects

Memristor-based synaptic network has been widely investigated and applied to neuromorphic computing systems for the fast computation and low design cost. As memristors continue to mature and achieve higher density, bit failures within crossbar arrays can become a critical issue. These can degrade th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC) S. 1 - 6
Hauptverfasser: Chenchen Liu, Miao Hu, Strachan, John Paul, Hai Li
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2017
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Memristor-based synaptic network has been widely investigated and applied to neuromorphic computing systems for the fast computation and low design cost. As memristors continue to mature and achieve higher density, bit failures within crossbar arrays can become a critical issue. These can degrade the computation accuracy significantly. In this work, we propose a defect rescuing design to restore the computation accuracy. In our proposed design, significant weights in a specified network are first identified and retraining and remapping algorithms are described. For a two layer neural network with 92.64% classification accuracy on MNIST digit recognition, our evaluation based on real device testing shows that our design can recover almost its full performance when 20% random defects are present.
AbstractList Memristor-based synaptic network has been widely investigated and applied to neuromorphic computing systems for the fast computation and low design cost. As memristors continue to mature and achieve higher density, bit failures within crossbar arrays can become a critical issue. These can degrade the computation accuracy significantly. In this work, we propose a defect rescuing design to restore the computation accuracy. In our proposed design, significant weights in a specified network are first identified and retraining and remapping algorithms are described. For a two layer neural network with 92.64% classification accuracy on MNIST digit recognition, our evaluation based on real device testing shows that our design can recover almost its full performance when 20% random defects are present.
Author Hai Li
Strachan, John Paul
Miao Hu
Chenchen Liu
Author_xml – sequence: 1
  surname: Chenchen Liu
  fullname: Chenchen Liu
  email: CHL192@pitt.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Pittsburgh, Pittsburgh, PA, USA
– sequence: 2
  surname: Miao Hu
  fullname: Miao Hu
  email: miao.hu@hpe.com
  organization: Hewlett Packard Labs., Palo Alto, CA, USA
– sequence: 3
  givenname: John Paul
  surname: Strachan
  fullname: Strachan, John Paul
  email: john-paul.strachan@hpe.com
  organization: Hewlett Packard Labs., Palo Alto, CA, USA
– sequence: 4
  surname: Hai Li
  fullname: Hai Li
  email: hai.li@duke.edu
  organization: Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA
BookMark eNotzE9LwzAYgPEIenDTswcv-QKdb5I2fXMRZPgPBsKY55Emb9qATUfSIX57C3r6wXN4VuwyTYkYuxOwEaJuHhRooZXZLEol4IKtlgqqNrJtr9njnoo7x9TzkcYcyzzlqrOFPE90ztM45dMQHfdUYp_4d5wHPsR-WEIgN5cbdhXsV6Hbf9fs8-X5sH2rdh-v79unXWUl4lwFsFoHwoAtgaKmsy54EoRWBtIBNBlADx4bI6xDsSgD1J3y3ktsrVqz-79vJKLjKcfR5p8jgoa6MeoXp0RGAQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3061639.3062310
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1450349277
9781450349277
EndPage 6
ExternalDocumentID 8060459
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a288t-f0a66fe8f87e03e5bacfde1e8a2fe6f06e908d0d8591ac818592f04b3ddd287a3
IEDL.DBID RIE
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424895400175&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:36:44 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a288t-f0a66fe8f87e03e5bacfde1e8a2fe6f06e908d0d8591ac818592f04b3ddd287a3
OpenAccessLink http://dl.acm.org/ft_gateway.cfm?id=3062310&type=pdf
PageCount 6
ParticipantIDs ieee_primary_8060459
PublicationCentury 2000
PublicationDate 2017-June
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-June
PublicationDecade 2010
PublicationTitle 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.4656465
Snippet Memristor-based synaptic network has been widely investigated and applied to neuromorphic computing systems for the fast computation and low design cost. As...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Degradation
Hardware
Memristors
Neural networks
Neuromorphics
Redundancy
Training
Title Rescuing memristor-based neuromorphic design with high defects
URI https://ieeexplore.ieee.org/document/8060459
WOSCitedRecordID wos000424895400175&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29S0MxED_a4uCk0orfZHA0bV5eXj4WF7E4SCmi0K3kJRfo0FZeW_9-k_RREVycktyQcLnhd7nc_Q7gvpbCRsNyGrhiVCiU1EaYo4UzonAMK-Yyz-yrmkz0bGamHXg41MIgYk4-w2Ga5r98v3a7FCob6cT0UpkudJWS-1qtlq2nENUoOr_RuTDDOCan5Ve7lIwW45P_nXMKg5-yOzI9AMoZdHDVh8c33LhdXJMlLjMRQEMT9HiSqSiX63hRC0d8zsQgKaxKEgVxFOREjQF8jJ_fn15o2_SAWq71lgZmpQyog1bISqxq64LHArXlAWVgEg3TnvnEO2ddglvDAxN16b2Prx9bnkNvtV7hBRAjNHOhEnFjJqxkFpXRsixrbcuaq3AJ_aT7_HPPazFv1b76W3wNxzxBWo5A3EBv2-zwFo7c13axae6yMb4BDi6NvQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29T0MhEL_UaqKTmtb4LYOjtDwejweLi7GpsTaNqUm3hgdH0qGt6Yd_v0CbGhMXJ-AGyHHD7zjufgdwX0lhgmE59bxkVJQoqQkwRzOrRWYZFswmntle2e-r0UgPavCwq4VBxJR8hq04TX_5bm7XMVTWVpHppdB7sF8IwdmmWmvL15OJoh3c3-Be6FYYo9vyq2FKwovO8f9OOoHmT-EdGewg5RRqOGvA4zsu7TqsyRSniQpgQSP4OJLIKKfzcFUTS1zKxSAxsEoiCXEQpFSNJnx0nodPXbpte0ANV2pFPTNSelRelchyLCpjvcMMleEepWcSNVOOucg8Z2wEXM09E1XunAvvH5OfQX02n-E5EC0Us74QYWMmjGQGS61knlfK5BUv_QU0ou7jzw2zxXir9uXf4js47A7feuPeS__1Co54BLgUj7iG-mqxxhs4sF-ryXJxmwzzDZyakQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+54th+ACM%2FEDAC%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Rescuing+memristor-based+neuromorphic+design+with+high+defects&rft.au=Chenchen+Liu&rft.au=Miao+Hu&rft.au=Strachan%2C+John+Paul&rft.au=Hai+Li&rft.date=2017-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1145%2F3061639.3062310&rft.externalDocID=8060459