Cross-architecture performance prediction (XAPP) using CPU code to predict GPU performance

GPUs have become prevalent and more general purpose, but GPU programming remains challenging and time consuming for the majority of programmers. In addition, it is not always clear which codes will benefit from getting ported to GPU. Therefore, having a tool to estimate GPU performance for a piece o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) s. 725 - 737
Hlavní autori: Ardalani, Newsha, Lestourgeon, Clint, Sankaralingam, Karthikeyan, Xiaojin Zhu
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: ACM 01.12.2015
Predmet:
ISSN:2379-3155
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract GPUs have become prevalent and more general purpose, but GPU programming remains challenging and time consuming for the majority of programmers. In addition, it is not always clear which codes will benefit from getting ported to GPU. Therefore, having a tool to estimate GPU performance for a piece of code before writing a GPU implementation is highly desirable. To this end, we propose Cross-Architecture Performance Prediction (XAPP), a machine-learning based technique that uses only single-threaded CPU implementation to predict GPU performance. Our paper is built on the two following insights: i) Execution time on GPU is a function of program properties and hardware characteristics. ii) By examining a vast array of previously implemented GPU codes along with their CPU counterparts, we can use established machine learning techniques to learn this correlation between program properties, hardware characteristics and GPU execution time. We use an adaptive two-level machine learning solution. Our results show that our tool is robust and accurate: we achieve 26.9% average error on a set of 24 real-world kernels. We also discuss practical usage scenarios for XAPP.
AbstractList GPUs have become prevalent and more general purpose, but GPU programming remains challenging and time consuming for the majority of programmers. In addition, it is not always clear which codes will benefit from getting ported to GPU. Therefore, having a tool to estimate GPU performance for a piece of code before writing a GPU implementation is highly desirable. To this end, we propose Cross-Architecture Performance Prediction (XAPP), a machine-learning based technique that uses only single-threaded CPU implementation to predict GPU performance. Our paper is built on the two following insights: i) Execution time on GPU is a function of program properties and hardware characteristics. ii) By examining a vast array of previously implemented GPU codes along with their CPU counterparts, we can use established machine learning techniques to learn this correlation between program properties, hardware characteristics and GPU execution time. We use an adaptive two-level machine learning solution. Our results show that our tool is robust and accurate: we achieve 26.9% average error on a set of 24 real-world kernels. We also discuss practical usage scenarios for XAPP.
Author Ardalani, Newsha
Lestourgeon, Clint
Sankaralingam, Karthikeyan
Xiaojin Zhu
Author_xml – sequence: 1
  givenname: Newsha
  surname: Ardalani
  fullname: Ardalani, Newsha
  email: newsha@cs.wisc.edu
– sequence: 2
  givenname: Clint
  surname: Lestourgeon
  fullname: Lestourgeon, Clint
  email: clint@cs.wisc.edu
– sequence: 3
  givenname: Karthikeyan
  surname: Sankaralingam
  fullname: Sankaralingam, Karthikeyan
  email: karu@cs.wisc.edu
– sequence: 4
  surname: Xiaojin Zhu
  fullname: Xiaojin Zhu
  email: jerryzhu@cs.wisc.edu
BookMark eNpNkEtLAzEUhaMo2NauXbjJUhepeUwesyxDrULBWVgQNyWTudGAnZRkuvDfG3yAcOA7HO49izNFZ0McAKErRheMVfKOG0G15otvGnqCpiWloirip2jCha6JYFJeoHnOoaOCcmGU4BP02qSYM7HJvYcR3HhMgA-QfEx7O7jiE_TBjSEO-OZl2ba3-JjD8Iabdotd7AGP8e8Gr0v27_cSnXv7kWH-yxna3q-emweyeVo_NssNsdyYkYgKirraFWrNpHa2177ue2O4VY7ZGqS0wJXzRnilrYDKG2Ulc53hnRIzdP3TGwBgd0hhb9PnThupVBngCyaFVBA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/2830772.2830780
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1450340342
9781450340342
EISSN 2379-3155
EndPage 737
ExternalDocumentID 7856640
Genre orig-research
GroupedDBID 6IE
6IL
ABLEC
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IEGSK
RIE
RIL
ID FETCH-LOGICAL-a288t-34e34eb9c4e377157cad7f9dd882a6c1a9e55ae26cf83f67a3e4f86a51cb82b63
IEDL.DBID RIE
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393287300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:02:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a288t-34e34eb9c4e377157cad7f9dd882a6c1a9e55ae26cf83f67a3e4f86a51cb82b63
OpenAccessLink https://dl.acm.org/doi/pdf/10.1145/2830772.2830780
PageCount 13
ParticipantIDs ieee_primary_7856640
PublicationCentury 2000
PublicationDate 2015-Dec.
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-Dec.
PublicationDecade 2010
PublicationTitle 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
PublicationTitleAbbrev MICRO
PublicationYear 2015
Publisher ACM
Publisher_xml – name: ACM
SSID ssib030238632
ssib023363937
ssib042476800
Score 2.3172438
Snippet GPUs have become prevalent and more general purpose, but GPU programming remains challenging and time consuming for the majority of programmers. In addition,...
SourceID ieee
SourceType Publisher
StartPage 725
SubjectTerms Cross-platform Prediction
GPU
Graphics processing units
Hardware
Kernel
Machine Learning
Performance Modeling
Prediction algorithms
Predictive models
Programming
Time measurement
Title Cross-architecture performance prediction (XAPP) using CPU code to predict GPU performance
URI https://ieeexplore.ieee.org/document/7856640
WOSCitedRecordID wos000393287300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zePCksom_ycGDgtna5vdRhtODjB4cDC8jTV_FyzZm599vXrutPXgRCilpAiWv5H3pe9_3CLkDHRcGs6cEaMWEy4A5aySzSSFyx8Nu6Ct1_Tc9mZjZzKYd8rjnwgBAlXwGA7ytYvn50m_wV9lQmwA-RDigH2itaq7W7ttJOFe85WqxFo5RDWdSJCIA6yjaqvvEQg5R-ipgy0HVoixkq7xK5V3Gx_97rxPSb2h6NN07oFPSgUWPfIzQ77F2gICuGnYAXa0xNIPmoPezpzR9oJj6_klH6ZQiv52Wy90Y-hL6WnP7ZDp-fh-9sm0BBeYSY0rGBYQrsz60WsdSe5frwuZ5gNVO-dhZkNJBonywV6G04yAKo5yMfWaSTPEz0l0sF3BOqIpQ_txybgUqxMnwsAjGzyIX6cyK-IL0cF3mq1ojY75dksu_u6_IUQAesk4LuSbdcr2BG3Lof8qv7_VtZdhfV0OhnQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-MKehJZRO_zcGDgtnafOcowzlxjh42GF5GmqbiZRuz8-836b568CIUUtIESl7J-6Xv_X4P4M7JOFche4o5KTAzqcNGK441yVlmqN8Nbamu35eDgRqPdVKDxy0XxjlXJp-5VrgtY_nZzC7Dr7K2VB58MH9A3-OMkWjF1tp8PYRSQSvONlTDUWLHmmSEeWgdRWt9n5jxdhC_8uiyVbZBGLJSYKX0L92j_73ZMTR3RD2UbF3QCdTctAEfneD5cDVEgOY7fgCaL0JwJhgE3Y-fkuQBheT3T9RJRigw3FEx24xBL76vMrcJo-7zsNPD6xIK2BClCkyZ81eqrW-ljLm0JpO5zjIPrI2wsdGOc-OIsN5iuZCGOpYrYXhsU0VSQU-hPp1N3RkgEQUBdE2pZkEjjvuHuTd_GplIpprF59AI6zKZr1QyJuslufi7-xYOesP3_qT_Oni7hEMPQ_gqSeQK6sVi6a5h3_4UX9-Lm9LIv_EUpOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+48th+Annual+IEEE%2FACM+International+Symposium+on+Microarchitecture+%28MICRO%29&rft.atitle=Cross-architecture+performance+prediction+%28XAPP%29+using+CPU+code+to+predict+GPU+performance&rft.au=Ardalani%2C+Newsha&rft.au=Lestourgeon%2C+Clint&rft.au=Sankaralingam%2C+Karthikeyan&rft.au=Xiaojin+Zhu&rft.date=2015-12-01&rft.pub=ACM&rft.eissn=2379-3155&rft.spage=725&rft.epage=737&rft_id=info:doi/10.1145%2F2830772.2830780&rft.externalDocID=7856640