Cross-architecture performance prediction (XAPP) using CPU code to predict GPU performance
GPUs have become prevalent and more general purpose, but GPU programming remains challenging and time consuming for the majority of programmers. In addition, it is not always clear which codes will benefit from getting ported to GPU. Therefore, having a tool to estimate GPU performance for a piece o...
Uložené v:
| Vydané v: | 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) s. 725 - 737 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
ACM
01.12.2015
|
| Predmet: | |
| ISSN: | 2379-3155 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | GPUs have become prevalent and more general purpose, but GPU programming remains challenging and time consuming for the majority of programmers. In addition, it is not always clear which codes will benefit from getting ported to GPU. Therefore, having a tool to estimate GPU performance for a piece of code before writing a GPU implementation is highly desirable. To this end, we propose Cross-Architecture Performance Prediction (XAPP), a machine-learning based technique that uses only single-threaded CPU implementation to predict GPU performance. Our paper is built on the two following insights: i) Execution time on GPU is a function of program properties and hardware characteristics. ii) By examining a vast array of previously implemented GPU codes along with their CPU counterparts, we can use established machine learning techniques to learn this correlation between program properties, hardware characteristics and GPU execution time. We use an adaptive two-level machine learning solution. Our results show that our tool is robust and accurate: we achieve 26.9% average error on a set of 24 real-world kernels. We also discuss practical usage scenarios for XAPP. |
|---|---|
| AbstractList | GPUs have become prevalent and more general purpose, but GPU programming remains challenging and time consuming for the majority of programmers. In addition, it is not always clear which codes will benefit from getting ported to GPU. Therefore, having a tool to estimate GPU performance for a piece of code before writing a GPU implementation is highly desirable. To this end, we propose Cross-Architecture Performance Prediction (XAPP), a machine-learning based technique that uses only single-threaded CPU implementation to predict GPU performance. Our paper is built on the two following insights: i) Execution time on GPU is a function of program properties and hardware characteristics. ii) By examining a vast array of previously implemented GPU codes along with their CPU counterparts, we can use established machine learning techniques to learn this correlation between program properties, hardware characteristics and GPU execution time. We use an adaptive two-level machine learning solution. Our results show that our tool is robust and accurate: we achieve 26.9% average error on a set of 24 real-world kernels. We also discuss practical usage scenarios for XAPP. |
| Author | Ardalani, Newsha Lestourgeon, Clint Sankaralingam, Karthikeyan Xiaojin Zhu |
| Author_xml | – sequence: 1 givenname: Newsha surname: Ardalani fullname: Ardalani, Newsha email: newsha@cs.wisc.edu – sequence: 2 givenname: Clint surname: Lestourgeon fullname: Lestourgeon, Clint email: clint@cs.wisc.edu – sequence: 3 givenname: Karthikeyan surname: Sankaralingam fullname: Sankaralingam, Karthikeyan email: karu@cs.wisc.edu – sequence: 4 surname: Xiaojin Zhu fullname: Xiaojin Zhu email: jerryzhu@cs.wisc.edu |
| BookMark | eNpNkEtLAzEUhaMo2NauXbjJUhepeUwesyxDrULBWVgQNyWTudGAnZRkuvDfG3yAcOA7HO49izNFZ0McAKErRheMVfKOG0G15otvGnqCpiWloirip2jCha6JYFJeoHnOoaOCcmGU4BP02qSYM7HJvYcR3HhMgA-QfEx7O7jiE_TBjSEO-OZl2ba3-JjD8Iabdotd7AGP8e8Gr0v27_cSnXv7kWH-yxna3q-emweyeVo_NssNsdyYkYgKirraFWrNpHa2177ue2O4VY7ZGqS0wJXzRnilrYDKG2Ulc53hnRIzdP3TGwBgd0hhb9PnThupVBngCyaFVBA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1145/2830772.2830780 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1450340342 9781450340342 |
| EISSN | 2379-3155 |
| EndPage | 737 |
| ExternalDocumentID | 7856640 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ABLEC ALMA_UNASSIGNED_HOLDINGS CBEJK IEGSK RIE RIL |
| ID | FETCH-LOGICAL-a288t-34e34eb9c4e377157cad7f9dd882a6c1a9e55ae26cf83f67a3e4f86a51cb82b63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393287300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:02:06 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a288t-34e34eb9c4e377157cad7f9dd882a6c1a9e55ae26cf83f67a3e4f86a51cb82b63 |
| OpenAccessLink | https://dl.acm.org/doi/pdf/10.1145/2830772.2830780 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_7856640 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-Dec. |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) |
| PublicationTitleAbbrev | MICRO |
| PublicationYear | 2015 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssib030238632 ssib023363937 ssib042476800 |
| Score | 2.3172438 |
| Snippet | GPUs have become prevalent and more general purpose, but GPU programming remains challenging and time consuming for the majority of programmers. In addition,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 725 |
| SubjectTerms | Cross-platform Prediction GPU Graphics processing units Hardware Kernel Machine Learning Performance Modeling Prediction algorithms Predictive models Programming Time measurement |
| Title | Cross-architecture performance prediction (XAPP) using CPU code to predict GPU performance |
| URI | https://ieeexplore.ieee.org/document/7856640 |
| WOSCitedRecordID | wos000393287300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zePCksom_ycGDgtna5vdRhtODjB4cDC8jTV_FyzZm599vXrutPXgRCilpAiWv5H3pe9_3CLkDHRcGs6cEaMWEy4A5aySzSSFyx8Nu6Ct1_Tc9mZjZzKYd8rjnwgBAlXwGA7ytYvn50m_wV9lQmwA-RDigH2itaq7W7ttJOFe85WqxFo5RDWdSJCIA6yjaqvvEQg5R-ipgy0HVoixkq7xK5V3Gx_97rxPSb2h6NN07oFPSgUWPfIzQ77F2gICuGnYAXa0xNIPmoPezpzR9oJj6_klH6ZQiv52Wy90Y-hL6WnP7ZDp-fh-9sm0BBeYSY0rGBYQrsz60WsdSe5frwuZ5gNVO-dhZkNJBonywV6G04yAKo5yMfWaSTPEz0l0sF3BOqIpQ_txybgUqxMnwsAjGzyIX6cyK-IL0cF3mq1ojY75dksu_u6_IUQAesk4LuSbdcr2BG3Lof8qv7_VtZdhfV0OhnQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-MKehJZRO_zcGDgtnafOcowzlxjh42GF5GmqbiZRuz8-836b568CIUUtIESl7J-6Xv_X4P4M7JOFche4o5KTAzqcNGK441yVlmqN8Nbamu35eDgRqPdVKDxy0XxjlXJp-5VrgtY_nZzC7Dr7K2VB58MH9A3-OMkWjF1tp8PYRSQSvONlTDUWLHmmSEeWgdRWt9n5jxdhC_8uiyVbZBGLJSYKX0L92j_73ZMTR3RD2UbF3QCdTctAEfneD5cDVEgOY7fgCaL0JwJhgE3Y-fkuQBheT3T9RJRigw3FEx24xBL76vMrcJo-7zsNPD6xIK2BClCkyZ81eqrW-ljLm0JpO5zjIPrI2wsdGOc-OIsN5iuZCGOpYrYXhsU0VSQU-hPp1N3RkgEQUBdE2pZkEjjvuHuTd_GplIpprF59AI6zKZr1QyJuslufi7-xYOesP3_qT_Oni7hEMPQ_gqSeQK6sVi6a5h3_4UX9-Lm9LIv_EUpOQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+48th+Annual+IEEE%2FACM+International+Symposium+on+Microarchitecture+%28MICRO%29&rft.atitle=Cross-architecture+performance+prediction+%28XAPP%29+using+CPU+code+to+predict+GPU+performance&rft.au=Ardalani%2C+Newsha&rft.au=Lestourgeon%2C+Clint&rft.au=Sankaralingam%2C+Karthikeyan&rft.au=Xiaojin+Zhu&rft.date=2015-12-01&rft.pub=ACM&rft.eissn=2379-3155&rft.spage=725&rft.epage=737&rft_id=info:doi/10.1145%2F2830772.2830780&rft.externalDocID=7856640 |