BLOwing Trees to the Ground: Layout Optimization of Decision Trees on Racetrack Memory
Modern distributed low power systems tend to integrate machine learning algorithms, which are directly executed on the distributed devices (on the edge). In resource constrained setups (e.g. battery driven sensor nodes), the execution of the machine learning models has to be optimized for execution...
Uloženo v:
| Vydáno v: | 2021 58th ACM/IEEE Design Automation Conference (DAC) s. 1111 - 1116 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
05.12.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Modern distributed low power systems tend to integrate machine learning algorithms, which are directly executed on the distributed devices (on the edge). In resource constrained setups (e.g. battery driven sensor nodes), the execution of the machine learning models has to be optimized for execution time and energy consumption. Racetrack memory (RTM), an emerging non-volatile memory (NVM), promises to achieve these goals by offering unprecedented integration density, smaller access-latency and reduced energy consumption. However, in order to access data in RTM, it needs to be shifted to the access port first, resulting in latency and energy penalties. In this paper, we propose B.L.O. (Bidirectional Linear Ordering), a novel domain-specific approach for placing decision trees in RTMs. We reduce the total amount of shifts during inference by exploiting the tree structure and estimated access probabilities. We further apply the state-of-the-art methods to place data structures in RTM, without exploiting any domain-specific knowledge, to the decision trees and compare them to B. L.O. We formally prove that the B.L.O. solution has an approximation ratio of 4, i.e., its number of shifts is guaranteed to be at most 4 times the optimal number of shifts for a given decision tree. Throughout the experimental evaluation, we show that for the realistic use case B.L.O. empirically outperforms the state-of-the-art data placement method on average by 54.7% in terms of shifts, 19.2% in terms of runtime and 19.2% in terms of energy consumption. |
|---|---|
| AbstractList | Modern distributed low power systems tend to integrate machine learning algorithms, which are directly executed on the distributed devices (on the edge). In resource constrained setups (e.g. battery driven sensor nodes), the execution of the machine learning models has to be optimized for execution time and energy consumption. Racetrack memory (RTM), an emerging non-volatile memory (NVM), promises to achieve these goals by offering unprecedented integration density, smaller access-latency and reduced energy consumption. However, in order to access data in RTM, it needs to be shifted to the access port first, resulting in latency and energy penalties. In this paper, we propose B.L.O. (Bidirectional Linear Ordering), a novel domain-specific approach for placing decision trees in RTMs. We reduce the total amount of shifts during inference by exploiting the tree structure and estimated access probabilities. We further apply the state-of-the-art methods to place data structures in RTM, without exploiting any domain-specific knowledge, to the decision trees and compare them to B. L.O. We formally prove that the B.L.O. solution has an approximation ratio of 4, i.e., its number of shifts is guaranteed to be at most 4 times the optimal number of shifts for a given decision tree. Throughout the experimental evaluation, we show that for the realistic use case B.L.O. empirically outperforms the state-of-the-art data placement method on average by 54.7% in terms of shifts, 19.2% in terms of runtime and 19.2% in terms of energy consumption. |
| Author | Hameed, Fazal Khan, Asif Ali Castrillon, Jeronimo Chen, Kuan-Hsun Chen, Jian-Jia Hakert, Christian |
| Author_xml | – sequence: 1 givenname: Christian surname: Hakert fullname: Hakert, Christian email: christian.hakert@tu-dortmund.de organization: Technische Universität Dortmund – sequence: 2 givenname: Asif Ali surname: Khan fullname: Khan, Asif Ali email: asif_ali.khan@tu-dresden.de organization: Technische Universität Dresden – sequence: 3 givenname: Kuan-Hsun surname: Chen fullname: Chen, Kuan-Hsun email: kuan-hsun.chen@tu-dortmund.de organization: Technische Universität Dortmund – sequence: 4 givenname: Fazal surname: Hameed fullname: Hameed, Fazal email: fazal.hameed@tu-dresden.de organization: Technische Universität Dresden – sequence: 5 givenname: Jeronimo surname: Castrillon fullname: Castrillon, Jeronimo email: jeronimo.castrillon@tu-dresden.de organization: Technische Universität Dresden – sequence: 6 givenname: Jian-Jia surname: Chen fullname: Chen, Jian-Jia email: jian-jia.chen@tu-dortmund.de organization: Technische Universität Dortmund |
| BookMark | eNotj99KwzAchSMoqLNPIEJeoDNJ89e72ekUKgWZ3o40-VWDthlthtSnd7LdnPPdfAfOJTrtYw8I3VAyp5SY2-WipJooPmeE0bkRWlKpTlBmlKZSCl4wxck5ysYxNEQSofk-L9D7fVX_hP4DrweAEaeI0yfg1RB3vb_DlZ3iLuF6m0IXfm0KscexxUtwYfzng7SHV-sgDdZ94Rfo4jBdobPWfo-QHXuG3h4f1uVTXtWr53JR5ZZplfLWes0lcCgUNJ5KxlthnW4I5VY4brU23jHulDOFJ9RrLxiVvKDSEGm1K2bo-rAbAGCzHUJnh2lzfF_8AZ_iUkM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC18074.2021.9586167 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665432740 1665432748 |
| EndPage | 1116 |
| ExternalDocumentID | 9586167 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a287t-fad846e4e37ebd1624f5ac8b014a5c4a889dc24c7c93d01d8d52164316906a8c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700186&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a287t-fad846e4e37ebd1624f5ac8b014a5c4a889dc24c7c93d01d8d52164316906a8c3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9586167 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec.-5 |
| PublicationDateYYYYMMDD | 2021-12-05 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 58th ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584060 |
| Score | 2.1872492 |
| Snippet | Modern distributed low power systems tend to integrate machine learning algorithms, which are directly executed on the distributed devices (on the edge). In... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1111 |
| SubjectTerms | Energy consumption Machine learning Machine learning algorithms Memory management Nonvolatile memory Power systems Runtime |
| Title | BLOwing Trees to the Ground: Layout Optimization of Decision Trees on Racetrack Memory |
| URI | https://ieeexplore.ieee.org/document/9586167 |
| WOSCitedRecordID | wos000766079700186&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5ODRbTe72Xx409biobZFaumtZCcJiLgr263Sf2-yXSuCF29JIAQmIW_eZF4GoSsQEU18WgXRlgaUKhKkktmAWytCmYYmqbQwsyEfjcR8LicNdL3VwhhjquQz0_HN6i1f57DyobKuTAQjjO-gHc7ZRqv1fXb8657DprAW6ZBQdvu3PeK_enEkMCKdeu6vIioVhgz2_7f6AWr_iPHwZAszh6hhshaa3Q3Hn66Lp4UxS1zm2Dly2AeSMn2Dh2qdr0o8dtfBW62zxLnF_bqeTj3JNZ4UmLJQ8Ioffcbtuo2eB_fT3kNQl0gIlKM6ZWCVdg6EoSbmJtWERdQmCkTqiI9KgCohpIaIAgcZ65BooR1cMy9_lyFTAuIj1MzyzBwjDGB4lID1eEU9c2WcEaupYrHbOIhPUMvbZPG--QVjUZvj9O_hM7TnzV4lfiTnqFkWK3OBduGjfFkWl9XWfQFpfZnj |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61CnpSacW3OXh0281ukk28qbVU3D6QWnor2TxAxF3ZbpX-e5PtWhG8eEsCQyAT8s1M5psB4FKyABOXVoGUwR7GAnkJp8aLjGE-T3xNSi7MJI4GAzad8lENXK25MFrrMvlMt9yw_MtXmVy4UFmbE0YRjTbAJsE48Fdsre_b4_73LDr5FU0H-bzdublDrtiLdQMD1Kqkf7VRKVGku_u__fdA84eOB0droNkHNZ02wOQ2Hn7aKRznWs9hkUFrykEXSkrVNYzFMlsUcGgfhLeKaQkzAztVR51KyA6ehNRFLuQr7Luc22UTPHfvx3c9r2qS4Anr7BSeEcqaEBrrMNKJQjTAhgjJEuv6CCKxYIwrGWAZSR4qHymmLGBTR4DnPhVMhgegnmapPgRQSh0FRBqHWNj5rjSiyCgsaGhVJ8Mj0HBnMntf1cGYVcdx_PfyBdjujfvxLH4YPJ6AHaeCMg2EnIJ6kS_0GdiSH8XLPD8v1fgFmzCdKg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=BLOwing+Trees+to+the+Ground%3A+Layout+Optimization+of+Decision+Trees+on+Racetrack+Memory&rft.au=Hakert%2C+Christian&rft.au=Khan%2C+Asif+Ali&rft.au=Chen%2C+Kuan-Hsun&rft.au=Hameed%2C+Fazal&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=1111&rft.epage=1116&rft_id=info:doi/10.1109%2FDAC18074.2021.9586167&rft.externalDocID=9586167 |