Cognitive Correlative Encoding for Genome Sequence Matching in Hyperdimensional System

Pattern matching is one of the key algorithms in identifying and analyzing genomic data. In this paper, we propose HYPERS, a novel framework supporting highly efficient and parallel pattern matching based on HyperDimensional computing (HDC). HYPERS transforms inherent sequential processes of pattern...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 781 - 786
Hlavní autoři: Poduval, Prathyush, Zou, Zhuowen, Yin, Xunzhao, Sadredini, Elaheh, Imani, Mohsen
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Pattern matching is one of the key algorithms in identifying and analyzing genomic data. In this paper, we propose HYPERS, a novel framework supporting highly efficient and parallel pattern matching based on HyperDimensional computing (HDC). HYPERS transforms inherent sequential processes of pattern matching to highly-parallelizable computation tasks using HDC. HYPERS exploits HDC memorization to encode and represent the genome sequences using high-dimensional vectors. Then, it combines the genome sequences to generate an HDC reference library. During the matching, HYPERS performs alignment by exact or approximate similarity check of an encoded query with the HDC reference library. HYPERS functionality is supported by theoretical proof, verified by software implementation, and extensively tested on the existing hardware platform. Our evaluation on FPGA shows that HYPERS provides, on average, 17.5\times speedup and 39.4\times energy efficiency as compared to the state-of-the-art pattern matching tools running on GTX 1080 GPU.
AbstractList Pattern matching is one of the key algorithms in identifying and analyzing genomic data. In this paper, we propose HYPERS, a novel framework supporting highly efficient and parallel pattern matching based on HyperDimensional computing (HDC). HYPERS transforms inherent sequential processes of pattern matching to highly-parallelizable computation tasks using HDC. HYPERS exploits HDC memorization to encode and represent the genome sequences using high-dimensional vectors. Then, it combines the genome sequences to generate an HDC reference library. During the matching, HYPERS performs alignment by exact or approximate similarity check of an encoded query with the HDC reference library. HYPERS functionality is supported by theoretical proof, verified by software implementation, and extensively tested on the existing hardware platform. Our evaluation on FPGA shows that HYPERS provides, on average, 17.5\times speedup and 39.4\times energy efficiency as compared to the state-of-the-art pattern matching tools running on GTX 1080 GPU.
Author Zou, Zhuowen
Sadredini, Elaheh
Yin, Xunzhao
Poduval, Prathyush
Imani, Mohsen
Author_xml – sequence: 1
  givenname: Prathyush
  surname: Poduval
  fullname: Poduval, Prathyush
  organization: Indian Institute of Science
– sequence: 2
  givenname: Zhuowen
  surname: Zou
  fullname: Zou, Zhuowen
  organization: UC San Diego
– sequence: 3
  givenname: Xunzhao
  surname: Yin
  fullname: Yin, Xunzhao
  organization: Zhejiang University
– sequence: 4
  givenname: Elaheh
  surname: Sadredini
  fullname: Sadredini, Elaheh
  organization: UC Riverside
– sequence: 5
  givenname: Mohsen
  surname: Imani
  fullname: Imani, Mohsen
  email: m.imani@uci.edu
  organization: UC Irvine
BookMark eNotj91Kw0AUhFdQUGueQIR9gcT9S7J7WWJthYoXVW_L2c1JXUh2axKFvL1RezMz8MEwc03OQwxIyB1nGefM3D8sK65ZqTLBBM9MrguRyzOSmFLzosiVFKVilyQZBm9ZwXKtZr0i71U8BD_6b6RV7Hts4S-vgou1DwfaxJ6uMcQO6Q4_vzA4pM8wuo9f6APdTEfsa99hGHwM0NLdNIzY3ZCLBtoBk5MvyNvj6rXapNuX9VO13KYgdDmmjUYphWikrK0xCtw8XkIprZ05N1zlORMahOC1FM7UaJXRFqBxUnEDIBfk9r_XI-L-2PsO-ml_ei9_AD3iUzg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586253
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 786
ExternalDocumentID 9586253
Genre orig-research
GrantInformation_xml – fundername: Semiconductor Research Corporation
  funderid: 10.13039/100000028
– fundername: Office of Naval Research
  funderid: 10.13039/100000006
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a287t-f8e3322f33db994ac2023a73bba28191455028a221d32c9deb498baafc3419aa3
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700131&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a287t-f8e3322f33db994ac2023a73bba28191455028a221d32c9deb498baafc3419aa3
PageCount 6
ParticipantIDs ieee_primary_9586253
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.3156369
Snippet Pattern matching is one of the key algorithms in identifying and analyzing genomic data. In this paper, we propose HYPERS, a novel framework supporting highly...
SourceID ieee
SourceType Publisher
StartPage 781
SubjectTerms Genomics
Graphics processing units
Hardware
Libraries
Software
Transforms
Title Cognitive Correlative Encoding for Genome Sequence Matching in Hyperdimensional System
URI https://ieeexplore.ieee.org/document/9586253
WOSCitedRecordID wos000766079700131&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0KFTW5LSNxo61oks2bE0FjdploZAH2QLp4ch0Ngldfr7KylOSqFLN2EkDGfJd6f77vsAbjOUKsVGvSxKBNOR4kZFhaGZpYqiZEUQm8imUzGfy1kL7va9MNbaAD6zfT8MtXxT6Y2_KhvI1MXfKW9DO8uG216t3d7x1T3nm2jTpBNTOXi4z2NP9eKSQBb3m7W_RFSCDxkf_e_tx9D7acYjs72bOYGWLbvwlu9gPyT3-hrvgb-bjEpd-VnEhaLk0ZbVypLnBixNntxf1983kWVJJi79dFtj5eHrPhYnW-byHryORy_5JGokEiJ0qU4dFcJydyQL7uwrZeL5FhnHjCuFvkIWWMiZQMZiw5mWxqpECoVYaM_jhshPoVNWpT0DIhQ1Zqg0FukwocIoTJnLdnShKUOD-hy63iaLjy0LxqIxx8Xfjy_h0Js9AD_SK-jU6429hgP9VS8_1zfh030DvJqcVA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEG4QTfRJDRh_2wcfHZR2Y-ujmSBGICSi4Y1cfywhkc0g-PfbKwNj4otvS7OlybXd3fW--z5CbmOQKoJSvSwIE64DJYwKMsNiyxQDyTMvNhEPh8lkIkcVcrfthbHWevCZbeCjr-WbQq_wqqwpIxd_R2KH7KJyVtmttdk9WN9z3omVbTotJpsP92kLyV5cGshbjfLrXzIq3ot0D_83_xGp_7Tj0dHW0RyTis1r5C3dAH9oigob757Bm3ZyXeBb1AWj9NHmxdzSlxIuTQfuv4s3TnSW055LQN3mmCOAHaNxuuYur5PXbmec9oJSJCEAl-wsgyyxwh3KTDgLSxki4yIXEAulAGtknoecJ8B5ywiupbEqlIkCyDQyuQGIE1LNi9yeEpooZkxbaciidsgSoyDiLt_RmWYcDOgzUkObTD_WPBjT0hznfw_fkP3eeNCf9p-GzxfkAJfAw0CiS1JdLlb2iuzpr-Xsc3Htl_EbEE2fnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Cognitive+Correlative+Encoding+for+Genome+Sequence+Matching+in+Hyperdimensional+System&rft.au=Poduval%2C+Prathyush&rft.au=Zou%2C+Zhuowen&rft.au=Yin%2C+Xunzhao&rft.au=Sadredini%2C+Elaheh&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=781&rft.epage=786&rft_id=info:doi/10.1109%2FDAC18074.2021.9586253&rft.externalDocID=9586253