Quantum Spectral Clustering of Mixed Graphs

Spectral graph partitioning is a well known technique to estimate clusters in undirected graphs. Recent approaches explored efficient spectral algorithms for directed and mixed graphs utilizing various matrix representations. Despite its success in clustering tasks, classical spectral algorithms suf...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 463 - 468
Hlavní autoři: Volya, Daniel, Mishra, Prabhat
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Spectral graph partitioning is a well known technique to estimate clusters in undirected graphs. Recent approaches explored efficient spectral algorithms for directed and mixed graphs utilizing various matrix representations. Despite its success in clustering tasks, classical spectral algorithms suffer from a cubic growth in runtime. In this paper, we propose a quantum spectral clustering algorithm for discovering clusters and properties of mixed graphs. Our experimental results based on numerical simulations demonstrate that our quantum spectral clustering outperforms classical spectral clustering techniques. Specifically, our approach leads to a linear growth in complexity, while state-of-the-art classical counterpart leads to cubic growth. In a case study, we apply our proposed algorithm to preform unsupervised machine learning using both real and simulated quantum computers. This work opens an avenue for efficient implementation of machine learning algorithms on directed as well as mixed graphs by making use of the inherent potential quantum speedup.
AbstractList Spectral graph partitioning is a well known technique to estimate clusters in undirected graphs. Recent approaches explored efficient spectral algorithms for directed and mixed graphs utilizing various matrix representations. Despite its success in clustering tasks, classical spectral algorithms suffer from a cubic growth in runtime. In this paper, we propose a quantum spectral clustering algorithm for discovering clusters and properties of mixed graphs. Our experimental results based on numerical simulations demonstrate that our quantum spectral clustering outperforms classical spectral clustering techniques. Specifically, our approach leads to a linear growth in complexity, while state-of-the-art classical counterpart leads to cubic growth. In a case study, we apply our proposed algorithm to preform unsupervised machine learning using both real and simulated quantum computers. This work opens an avenue for efficient implementation of machine learning algorithms on directed as well as mixed graphs by making use of the inherent potential quantum speedup.
Author Mishra, Prabhat
Volya, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Volya
  fullname: Volya, Daniel
  organization: University of Florida,Gainesville,Florida,USA
– sequence: 2
  givenname: Prabhat
  surname: Mishra
  fullname: Mishra, Prabhat
  organization: University of Florida,Gainesville,Florida,USA
BookMark eNotj8tKw0AUQEdQUGu-QITsJfXOIzN3liXaKlRE1HW5M3OjgTQNeYD-vYLdnLM7cC7FaXfoWIgbCUspwd_dryqJ4MxSgZJLX6LVgCci8w6ltaXRyhk4F9k4NgEslGj-eCFuX2fqpnmfv_Ucp4HavGrnceKh6T7zQ50_N9-c8s1A_dd4Jc5qakfOjl6Ij_XDe_VYbF82T9VqW5BCNxU1SFYcNVMwgbSV5JJKEEArctpG8tZ6GzAajEkS-BBiQh1MIgAk1Atx_d9tmHnXD82ehp_dcUn_Al8wQ6Y
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586308
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 468
ExternalDocumentID 9586308
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a287t-f01e2ec3eab4ba361a7d2d0b032a736ca96696b8c48cd1a09bbcd83b4da008a83
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a287t-f01e2ec3eab4ba361a7d2d0b032a736ca96696b8c48cd1a09bbcd83b4da008a83
PageCount 6
ParticipantIDs ieee_primary_9586308
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.2078662
Snippet Spectral graph partitioning is a well known technique to estimate clusters in undirected graphs. Recent approaches explored efficient spectral algorithms for...
SourceID ieee
SourceType Publisher
StartPage 463
SubjectTerms Clustering algorithms
Computers
eigenvalue computation
eigenvector projection
Machine learning
Machine learning algorithms
Partitioning algorithms
Quantum computing
Runtime
spectral graph clustering
Title Quantum Spectral Clustering of Mixed Graphs
URI https://ieeexplore.ieee.org/document/9586308
WOSCitedRecordID wos000766079700078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvBo2mSzm2SPslq9WHpQ6K1MkgkUtJU-pD_fZLtWBC_eQkgImQQ-5vF9Q8gNopSFC5wZaQPLreYMnC1ZjiYD6UtrpaubTejh0IzH5ahFbndcGESsi8-wl4Z1Lt_P3TqFyvplYZRMzN49rdWWq_X9d1J2L2ITb0g6gpf9-7tKJKmX6ARmotfs_dVEpcaQweH_Tj8i3R8yHh3tYOaYtHDWIakYM6LFO03941OwglZv66R5EJfQeaDP0w16-pjUqJdd8jp4eKmeWNP3gEH0X1YscIEZOolgcwtSCdA-89xymYGWykF0UUpljcuN8wJ4NKjz0da5h4joYOQJac_mMzwlNOmxoQou6OhnGQSQEbJAO6-VCMrgGemki04-ttIWk-aO539PX5CDZMu6mqO4JO3VYo1XZN99rqbLxXX9Hl8b9IyC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA2lCrpSacW3s3Bp2mSSSTJLqdaKbemiQncljxsoaEf6ED_fZDpWBDfuQkgIuQkc7uOci9ANAGOZ9QQrZjzmRhKsrckxB5Vq5nJjmC2bTcjhUE0m-aiGbrdcGAAoi8-gFYdlLt8Vdh1DZe08U4JFZu9OxnlKNmyt798T83sBnUhF06Ekb9_fdWgUewluYEpb1e5fbVRKFOke_O_8Q9T8oeMloy3QHKEazBsolmMGvHhLYgf5GK5IOq_rqHoQliSFTwazT3DJY9SjXjbRS_dh3OnhqvMB1sGDWWFPKKRgGWjDjWaCaulSRwxhqZZMWB2clFwYZbmyjmoSTGpdsDZ3OmC6VuwY1efFHE5QEhXZQHjrZfC0FGjNAmhpaZ0U1AsFp6gRLzp934hbTKs7nv09fY32euNBf9p_Gj6fo_1o17K2I7tA9dViDZdo136sZsvFVfk2X5-Hj8k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Quantum+Spectral+Clustering+of+Mixed+Graphs&rft.au=Volya%2C+Daniel&rft.au=Mishra%2C+Prabhat&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=463&rft.epage=468&rft_id=info:doi/10.1109%2FDAC18074.2021.9586308&rft.externalDocID=9586308