Quantum Spectral Clustering of Mixed Graphs
Spectral graph partitioning is a well known technique to estimate clusters in undirected graphs. Recent approaches explored efficient spectral algorithms for directed and mixed graphs utilizing various matrix representations. Despite its success in clustering tasks, classical spectral algorithms suf...
Uloženo v:
| Vydáno v: | 2021 58th ACM/IEEE Design Automation Conference (DAC) s. 463 - 468 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
05.12.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Spectral graph partitioning is a well known technique to estimate clusters in undirected graphs. Recent approaches explored efficient spectral algorithms for directed and mixed graphs utilizing various matrix representations. Despite its success in clustering tasks, classical spectral algorithms suffer from a cubic growth in runtime. In this paper, we propose a quantum spectral clustering algorithm for discovering clusters and properties of mixed graphs. Our experimental results based on numerical simulations demonstrate that our quantum spectral clustering outperforms classical spectral clustering techniques. Specifically, our approach leads to a linear growth in complexity, while state-of-the-art classical counterpart leads to cubic growth. In a case study, we apply our proposed algorithm to preform unsupervised machine learning using both real and simulated quantum computers. This work opens an avenue for efficient implementation of machine learning algorithms on directed as well as mixed graphs by making use of the inherent potential quantum speedup. |
|---|---|
| AbstractList | Spectral graph partitioning is a well known technique to estimate clusters in undirected graphs. Recent approaches explored efficient spectral algorithms for directed and mixed graphs utilizing various matrix representations. Despite its success in clustering tasks, classical spectral algorithms suffer from a cubic growth in runtime. In this paper, we propose a quantum spectral clustering algorithm for discovering clusters and properties of mixed graphs. Our experimental results based on numerical simulations demonstrate that our quantum spectral clustering outperforms classical spectral clustering techniques. Specifically, our approach leads to a linear growth in complexity, while state-of-the-art classical counterpart leads to cubic growth. In a case study, we apply our proposed algorithm to preform unsupervised machine learning using both real and simulated quantum computers. This work opens an avenue for efficient implementation of machine learning algorithms on directed as well as mixed graphs by making use of the inherent potential quantum speedup. |
| Author | Mishra, Prabhat Volya, Daniel |
| Author_xml | – sequence: 1 givenname: Daniel surname: Volya fullname: Volya, Daniel organization: University of Florida,Gainesville,Florida,USA – sequence: 2 givenname: Prabhat surname: Mishra fullname: Mishra, Prabhat organization: University of Florida,Gainesville,Florida,USA |
| BookMark | eNotj8tKw0AUQEdQUGu-QITsJfXOIzN3liXaKlRE1HW5M3OjgTQNeYD-vYLdnLM7cC7FaXfoWIgbCUspwd_dryqJ4MxSgZJLX6LVgCci8w6ltaXRyhk4F9k4NgEslGj-eCFuX2fqpnmfv_Ucp4HavGrnceKh6T7zQ50_N9-c8s1A_dd4Jc5qakfOjl6Ij_XDe_VYbF82T9VqW5BCNxU1SFYcNVMwgbSV5JJKEEArctpG8tZ6GzAajEkS-BBiQh1MIgAk1Atx_d9tmHnXD82ehp_dcUn_Al8wQ6Y |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC18074.2021.9586308 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665432740 1665432748 |
| EndPage | 468 |
| ExternalDocumentID | 9586308 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a287t-f01e2ec3eab4ba361a7d2d0b032a736ca96696b8c48cd1a09bbcd83b4da008a83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:30 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a287t-f01e2ec3eab4ba361a7d2d0b032a736ca96696b8c48cd1a09bbcd83b4da008a83 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9586308 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec.-5 |
| PublicationDateYYYYMMDD | 2021-12-05 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 58th ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584060 |
| Score | 2.2078662 |
| Snippet | Spectral graph partitioning is a well known technique to estimate clusters in undirected graphs. Recent approaches explored efficient spectral algorithms for... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 463 |
| SubjectTerms | Clustering algorithms Computers eigenvalue computation eigenvector projection Machine learning Machine learning algorithms Partitioning algorithms Quantum computing Runtime spectral graph clustering |
| Title | Quantum Spectral Clustering of Mixed Graphs |
| URI | https://ieeexplore.ieee.org/document/9586308 |
| WOSCitedRecordID | wos000766079700078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvBo2mSzm2SPslq9WHpQ6K1MkgkUtJU-pD_fZLtWBC_eQkgImQQ-5vF9Q8gNopSFC5wZaQPLreYMnC1ZjiYD6UtrpaubTejh0IzH5ahFbndcGESsi8-wl4Z1Lt_P3TqFyvplYZRMzN49rdWWq_X9d1J2L2ITb0g6gpf9-7tKJKmX6ARmotfs_dVEpcaQweH_Tj8i3R8yHh3tYOaYtHDWIakYM6LFO03941OwglZv66R5EJfQeaDP0w16-pjUqJdd8jp4eKmeWNP3gEH0X1YscIEZOolgcwtSCdA-89xymYGWykF0UUpljcuN8wJ4NKjz0da5h4joYOQJac_mMzwlNOmxoQou6OhnGQSQEbJAO6-VCMrgGemki04-ttIWk-aO539PX5CDZMu6mqO4JO3VYo1XZN99rqbLxXX9Hl8b9IyC |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA2lCrpSacW3s3Bp2mSSSTJLqdaKbemiQncljxsoaEf6ED_fZDpWBDfuQkgIuQkc7uOci9ANAGOZ9QQrZjzmRhKsrckxB5Vq5nJjmC2bTcjhUE0m-aiGbrdcGAAoi8-gFYdlLt8Vdh1DZe08U4JFZu9OxnlKNmyt798T83sBnUhF06Ekb9_fdWgUewluYEpb1e5fbVRKFOke_O_8Q9T8oeMloy3QHKEazBsolmMGvHhLYgf5GK5IOq_rqHoQliSFTwazT3DJY9SjXjbRS_dh3OnhqvMB1sGDWWFPKKRgGWjDjWaCaulSRwxhqZZMWB2clFwYZbmyjmoSTGpdsDZ3OmC6VuwY1efFHE5QEhXZQHjrZfC0FGjNAmhpaZ0U1AsFp6gRLzp934hbTKs7nv09fY32euNBf9p_Gj6fo_1o17K2I7tA9dViDZdo136sZsvFVfk2X5-Hj8k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Quantum+Spectral+Clustering+of+Mixed+Graphs&rft.au=Volya%2C+Daniel&rft.au=Mishra%2C+Prabhat&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=463&rft.epage=468&rft_id=info:doi/10.1109%2FDAC18074.2021.9586308&rft.externalDocID=9586308 |