In-Hardware Learning of Multilayer Spiking Neural Networks on a Neuromorphic Processor
Although widely used in machine learning, backpropagation cannot directly be applied to SNN training and is not feasible on a neuromorphic processor that emulates biological neuron and synapses. This work presents a spike-based backpropagation algorithm with biological plausible local update rules a...
Saved in:
| Published in: | 2021 58th ACM/IEEE Design Automation Conference (DAC) pp. 367 - 372 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
05.12.2021
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Although widely used in machine learning, backpropagation cannot directly be applied to SNN training and is not feasible on a neuromorphic processor that emulates biological neuron and synapses. This work presents a spike-based backpropagation algorithm with biological plausible local update rules and adapts it to fit the constraint in a neuromorphic hardware. The algorithm is implemented on Intel's Loihi chip enabling low power in-hardware supervised online learning of multilayered SNNs for mobile applications. We test this implementation on MNIST, Fashion-MNIST, CIFAR-10 and MSTAR datasets with promising performance and energy-efficiency, and demonstrate a possibility of incremental online learning with the implementation. |
|---|---|
| DOI: | 10.1109/DAC18074.2021.9586323 |