SpV8: Pursuing Optimal Vectorization and Regular Computation Pattern in SpMV

Sparse Matrix-Vector Multiplication (SpMV) plays an important role in many scientific and industry applications, and remains a well-known challenge due to the high sparsity and irregularity. Most existing researches on SpMV try to pursue high vectorization efficiency. However, such approaches may su...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 661 - 666
Hlavní autori: Li, Chenyang, Xia, Tian, Zhao, Wenzhe, Zheng, Nanning, Ren, Pengju
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 05.12.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sparse Matrix-Vector Multiplication (SpMV) plays an important role in many scientific and industry applications, and remains a well-known challenge due to the high sparsity and irregularity. Most existing researches on SpMV try to pursue high vectorization efficiency. However, such approaches may suffer from non-negligible speculation penalty due to their irregular computation patterns. In this paper, we propose SpV8, a novel approach that optimizes both speculation and vectorization in SpMV. Specifically, SpV8 analyzes data distribution in different matrices and row panels, and accordingly applies optimization method that achieves the maximal vectorization with regular computation patterns. We evaluate SpV8 on Intel Xeon CPU and compare with multiple state-of-art SpMV algorithms using 71 sparse matrices. The results show that SpV8 achieves up to 10× speedup (average 2.8×) against the standard MKL SpMV routine, and up to 2.4× speedup (average 1.4×) against the best existing approach. Moreover, SpMV features very low preprocessing overhead in all compared approaches, which indicates SpV8 is highly-applicable in real-world applications.
AbstractList Sparse Matrix-Vector Multiplication (SpMV) plays an important role in many scientific and industry applications, and remains a well-known challenge due to the high sparsity and irregularity. Most existing researches on SpMV try to pursue high vectorization efficiency. However, such approaches may suffer from non-negligible speculation penalty due to their irregular computation patterns. In this paper, we propose SpV8, a novel approach that optimizes both speculation and vectorization in SpMV. Specifically, SpV8 analyzes data distribution in different matrices and row panels, and accordingly applies optimization method that achieves the maximal vectorization with regular computation patterns. We evaluate SpV8 on Intel Xeon CPU and compare with multiple state-of-art SpMV algorithms using 71 sparse matrices. The results show that SpV8 achieves up to 10× speedup (average 2.8×) against the standard MKL SpMV routine, and up to 2.4× speedup (average 1.4×) against the best existing approach. Moreover, SpMV features very low preprocessing overhead in all compared approaches, which indicates SpV8 is highly-applicable in real-world applications.
Author Zheng, Nanning
Xia, Tian
Ren, Pengju
Li, Chenyang
Zhao, Wenzhe
Author_xml – sequence: 1
  givenname: Chenyang
  surname: Li
  fullname: Li, Chenyang
  email: lcy2000@stu.xjtu.edu.cn
  organization: Xi'an Jiaotong University,School of Electronic Science and Engineering,Xi'an,China
– sequence: 2
  givenname: Tian
  surname: Xia
  fullname: Xia, Tian
  email: tian_xia@xjtu.edu.cn
  organization: Xi'an Jiaotong University,School of Electronic Science and Engineering,Xi'an,China
– sequence: 3
  givenname: Wenzhe
  surname: Zhao
  fullname: Zhao, Wenzhe
  email: wenzhe@xjtu.edu.cn
  organization: Xi'an Jiaotong University,School of Electronic Science and Engineering,Xi'an,China
– sequence: 4
  givenname: Nanning
  surname: Zheng
  fullname: Zheng, Nanning
  email: nnzheng@xjtu.edu.cn
  organization: Xi'an Jiaotong University,School of Electronic Science and Engineering,Xi'an,China
– sequence: 5
  givenname: Pengju
  surname: Ren
  fullname: Ren, Pengju
  email: pengjuren@xjtu.edu.cn
  organization: Xi'an Jiaotong University,School of Electronic Science and Engineering,Xi'an,China
BookMark eNotj11LwzAYhSMoqLO_QIT8gc58J_Vu1E-obDjt7XibpiPQpSVNL_TXO9huzoHn4vCcW3QZhuAQeqBkSSkpHp9XJTVEiyUjjC4LaRST9AJlhTZUKSk404Jco2yafEMUkUYc8wZV27E2T3gzx2n2YY_XY_IH6HHtbBqi_4Pkh4AhtPjL7eceIi6HwzinE99ASi4G7APejp_1HbrqoJ9cdu4F-nl9-S7f82r99lGuqhyY0Sm3igKjWknptLW6EJYQMA01nIIxsiUt6VqgDS8U0wysY9x1gnVSgBNtQ_gC3Z92vXNuN8ajcfzdnT_zfxflTvU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586251
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 666
ExternalDocumentID 9586251
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Research and Development
  funderid: 10.13039/100006190
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a287t-c61a217655e7cc794c00a8b1831a885d0d0fda1b396272ace23ef42f54ae4db03
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a287t-c61a217655e7cc794c00a8b1831a885d0d0fda1b396272ace23ef42f54ae4db03
PageCount 6
ParticipantIDs ieee_primary_9586251
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.25103
Snippet Sparse Matrix-Vector Multiplication (SpMV) plays an important role in many scientific and industry applications, and remains a well-known challenge due to the...
SourceID ieee
SourceType Publisher
StartPage 661
SubjectTerms Complexity theory
Design automation
Industry applications
Kernel
Optimization methods
SIMD
Sparse matrices
Speculation
SpMV
Vectorization
Title SpV8: Pursuing Optimal Vectorization and Regular Computation Pattern in SpMV
URI https://ieeexplore.ieee.org/document/9586251
WOSCitedRecordID wos000766079700111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5ODRbZPsZjfrTarFQ62L1aW3kk8o6LbU1t_vJLtWBC_ewkAITDKZTJL3HkJXiquUG6cibTypNjVJJHMmIkUMo8rAdhjInstRNh6L6TQvWuh6i4Wx1obPZ7bnm-Et3yz0xl-V9XMO52-Pl97JsqzGan2vHf-6B7mJNCAdSvL-3e2AeqoXKAIZ7TV9f4mohBwy3P_f6Aeo-wPGw8U2zRyilq06aDRZluIGF1Drb8CKnyDy3-UbLsMlfIOtxLIy-DmIza9wLd9Q24tAqlnheYUny8eyi16H9y-Dh6gRRogkFDjrSKdUQimRcm4zrSGiNCFSKIhOKoXghhjijKQq9so6TGrLYusS5ngibWIUiY9Qu1pU9hhhwyHCHRWaOAczBQcELbhwsUuEZcq6E9Txnpgta-6LWeOE07_NZ2jPOzt89-DnqL1ebewF2tWf6_nH6jJM2Bf38Zdb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lCnpSacVvc_Dotkk2abPepCoVt3Wxdemt5BMKui219febZNeK4MVbGAiBSSaTSfLeA-BKMtlh2spIaU-qjTWNREJ4JJEmWGq3HQay5zztDod8MkmyGrjeYGGMMeHzmWn5ZnjL13O19ldl7YS587fHS28xSgku0Vrfq8e_77nshCqYDkZJ--62hz3ZiysDCW5VvX_JqIQs8rD3v_H3QfMHjgezTaI5ADVTNEA6WuT8Bmau2l87K3x2sf8u3mAeruErdCUUhYYvQW5-CUsBh9KeBVrNAs4KOFoM8iZ4fbgf9_pRJY0QCVfirCLVwcIVEx3GTFcpF1MKIcGli08sOGcaaWS1wDL22jpEKENiYymxjApDtUTxIagX88IcAaiZi3GLuULWurlyRwTFGbexpdwQaewxaHhPTBcl-8W0csLJ3-ZLsNMfD9Jp-jh8OgW73vHh8wc7A_XVcm3Owbb6XM0-lhdh8r4ACKmaog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=SpV8%3A+Pursuing+Optimal+Vectorization+and+Regular+Computation+Pattern+in+SpMV&rft.au=Li%2C+Chenyang&rft.au=Xia%2C+Tian&rft.au=Zhao%2C+Wenzhe&rft.au=Zheng%2C+Nanning&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=661&rft.epage=666&rft_id=info:doi/10.1109%2FDAC18074.2021.9586251&rft.externalDocID=9586251