SpV8: Pursuing Optimal Vectorization and Regular Computation Pattern in SpMV
Sparse Matrix-Vector Multiplication (SpMV) plays an important role in many scientific and industry applications, and remains a well-known challenge due to the high sparsity and irregularity. Most existing researches on SpMV try to pursue high vectorization efficiency. However, such approaches may su...
Uložené v:
| Vydané v: | 2021 58th ACM/IEEE Design Automation Conference (DAC) s. 661 - 666 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
05.12.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Sparse Matrix-Vector Multiplication (SpMV) plays an important role in many scientific and industry applications, and remains a well-known challenge due to the high sparsity and irregularity. Most existing researches on SpMV try to pursue high vectorization efficiency. However, such approaches may suffer from non-negligible speculation penalty due to their irregular computation patterns. In this paper, we propose SpV8, a novel approach that optimizes both speculation and vectorization in SpMV. Specifically, SpV8 analyzes data distribution in different matrices and row panels, and accordingly applies optimization method that achieves the maximal vectorization with regular computation patterns. We evaluate SpV8 on Intel Xeon CPU and compare with multiple state-of-art SpMV algorithms using 71 sparse matrices. The results show that SpV8 achieves up to 10× speedup (average 2.8×) against the standard MKL SpMV routine, and up to 2.4× speedup (average 1.4×) against the best existing approach. Moreover, SpMV features very low preprocessing overhead in all compared approaches, which indicates SpV8 is highly-applicable in real-world applications. |
|---|---|
| AbstractList | Sparse Matrix-Vector Multiplication (SpMV) plays an important role in many scientific and industry applications, and remains a well-known challenge due to the high sparsity and irregularity. Most existing researches on SpMV try to pursue high vectorization efficiency. However, such approaches may suffer from non-negligible speculation penalty due to their irregular computation patterns. In this paper, we propose SpV8, a novel approach that optimizes both speculation and vectorization in SpMV. Specifically, SpV8 analyzes data distribution in different matrices and row panels, and accordingly applies optimization method that achieves the maximal vectorization with regular computation patterns. We evaluate SpV8 on Intel Xeon CPU and compare with multiple state-of-art SpMV algorithms using 71 sparse matrices. The results show that SpV8 achieves up to 10× speedup (average 2.8×) against the standard MKL SpMV routine, and up to 2.4× speedup (average 1.4×) against the best existing approach. Moreover, SpMV features very low preprocessing overhead in all compared approaches, which indicates SpV8 is highly-applicable in real-world applications. |
| Author | Zheng, Nanning Xia, Tian Ren, Pengju Li, Chenyang Zhao, Wenzhe |
| Author_xml | – sequence: 1 givenname: Chenyang surname: Li fullname: Li, Chenyang email: lcy2000@stu.xjtu.edu.cn organization: Xi'an Jiaotong University,School of Electronic Science and Engineering,Xi'an,China – sequence: 2 givenname: Tian surname: Xia fullname: Xia, Tian email: tian_xia@xjtu.edu.cn organization: Xi'an Jiaotong University,School of Electronic Science and Engineering,Xi'an,China – sequence: 3 givenname: Wenzhe surname: Zhao fullname: Zhao, Wenzhe email: wenzhe@xjtu.edu.cn organization: Xi'an Jiaotong University,School of Electronic Science and Engineering,Xi'an,China – sequence: 4 givenname: Nanning surname: Zheng fullname: Zheng, Nanning email: nnzheng@xjtu.edu.cn organization: Xi'an Jiaotong University,School of Electronic Science and Engineering,Xi'an,China – sequence: 5 givenname: Pengju surname: Ren fullname: Ren, Pengju email: pengjuren@xjtu.edu.cn organization: Xi'an Jiaotong University,School of Electronic Science and Engineering,Xi'an,China |
| BookMark | eNotj11LwzAYhSMoqLO_QIT8gc58J_Vu1E-obDjt7XibpiPQpSVNL_TXO9huzoHn4vCcW3QZhuAQeqBkSSkpHp9XJTVEiyUjjC4LaRST9AJlhTZUKSk404Jco2yafEMUkUYc8wZV27E2T3gzx2n2YY_XY_IH6HHtbBqi_4Pkh4AhtPjL7eceIi6HwzinE99ASi4G7APejp_1HbrqoJ9cdu4F-nl9-S7f82r99lGuqhyY0Sm3igKjWknptLW6EJYQMA01nIIxsiUt6VqgDS8U0wysY9x1gnVSgBNtQ_gC3Z92vXNuN8ajcfzdnT_zfxflTvU |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC18074.2021.9586251 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665432740 1665432748 |
| EndPage | 666 |
| ExternalDocumentID | 9586251 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Research and Development funderid: 10.13039/100006190 |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a287t-c61a217655e7cc794c00a8b1831a885d0d0fda1b396272ace23ef42f54ae4db03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a287t-c61a217655e7cc794c00a8b1831a885d0d0fda1b396272ace23ef42f54ae4db03 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9586251 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec.-5 |
| PublicationDateYYYYMMDD | 2021-12-05 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 58th ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584060 |
| Score | 2.25103 |
| Snippet | Sparse Matrix-Vector Multiplication (SpMV) plays an important role in many scientific and industry applications, and remains a well-known challenge due to the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 661 |
| SubjectTerms | Complexity theory Design automation Industry applications Kernel Optimization methods SIMD Sparse matrices Speculation SpMV Vectorization |
| Title | SpV8: Pursuing Optimal Vectorization and Regular Computation Pattern in SpMV |
| URI | https://ieeexplore.ieee.org/document/9586251 |
| WOSCitedRecordID | wos000766079700111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5ODRbZPsZjfrTarFQ62L1aW3kk8o6LbU1t_vJLtWBC_ewkAITDKZTJL3HkJXiquUG6cibTypNjVJJHMmIkUMo8rAdhjInstRNh6L6TQvWuh6i4Wx1obPZ7bnm-Et3yz0xl-V9XMO52-Pl97JsqzGan2vHf-6B7mJNCAdSvL-3e2AeqoXKAIZ7TV9f4mohBwy3P_f6Aeo-wPGw8U2zRyilq06aDRZluIGF1Drb8CKnyDy3-UbLsMlfIOtxLIy-DmIza9wLd9Q24tAqlnheYUny8eyi16H9y-Dh6gRRogkFDjrSKdUQimRcm4zrSGiNCFSKIhOKoXghhjijKQq9so6TGrLYusS5ngibWIUiY9Qu1pU9hhhwyHCHRWaOAczBQcELbhwsUuEZcq6E9Txnpgta-6LWeOE07_NZ2jPOzt89-DnqL1ebewF2tWf6_nH6jJM2Bf38Zdb |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lCnpSacVvc_Dotkk2abPepCoVt3Wxdemt5BMKui219febZNeK4MVbGAiBSSaTSfLeA-BKMtlh2spIaU-qjTWNREJ4JJEmWGq3HQay5zztDod8MkmyGrjeYGGMMeHzmWn5ZnjL13O19ldl7YS587fHS28xSgku0Vrfq8e_77nshCqYDkZJ--62hz3ZiysDCW5VvX_JqIQs8rD3v_H3QfMHjgezTaI5ADVTNEA6WuT8Bmau2l87K3x2sf8u3mAeruErdCUUhYYvQW5-CUsBh9KeBVrNAs4KOFoM8iZ4fbgf9_pRJY0QCVfirCLVwcIVEx3GTFcpF1MKIcGli08sOGcaaWS1wDL22jpEKENiYymxjApDtUTxIagX88IcAaiZi3GLuULWurlyRwTFGbexpdwQaewxaHhPTBcl-8W0csLJ3-ZLsNMfD9Jp-jh8OgW73vHh8wc7A_XVcm3Owbb6XM0-lhdh8r4ACKmaog |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=SpV8%3A+Pursuing+Optimal+Vectorization+and+Regular+Computation+Pattern+in+SpMV&rft.au=Li%2C+Chenyang&rft.au=Xia%2C+Tian&rft.au=Zhao%2C+Wenzhe&rft.au=Zheng%2C+Nanning&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=661&rft.epage=666&rft_id=info:doi/10.1109%2FDAC18074.2021.9586251&rft.externalDocID=9586251 |